Продолговатый мозг пищеварение. Интересные факты о продолговатом отделе

Особенности функциональной организации. Продолговатый мозг (medulla oblongata) у человека имеет длину около 25 мм. Он является продолжением спинного мозга. Структурно по разнообразию и стро­ению ядер продолговатый мозг сложнее, чем спинной. В отличие от спинного мозга он не имеет метамерного, повторяемого строения, серое вещество в нем расположено не в центре, а ядрами к пери­ферии.

В продолговатом мозге находятся оливы, связанные со спинным мозгом, экстрапирамидной системой и мозжечком - это тонкое и клиновидное ядра проприоцептивной чувствительности (ядра Голля и Бурдаха). Здесь же находятся перекресты нисходящих пирамидных путей и восходящих путей, образованных тонким и клиновидным пучками (Голля и Бурдаха), ретикулярная формация.

Мост

Мост (pons cerebri, pons Varolii) располагается выше продолго­ватого мозга и выполняет сенсорные, проводниковые, двигательные, интегративные рефлекторные функции.

В состав моста входят ядра лицевого, тройничного, отводящего, преддверно-улиткового нерва (вестибулярные и улитковые ядра), ядра преддверной части преддверно-улиткового нерва (вестибуляр­ного нерва): латеральное (Дейтерса) и верхнее (Бехтерева). Рети­кулярная формация моста тесно связана с ретикулярной формацией среднего и продолговатого мозга.

Важной структурой моста является средняя ножка мозжечка. Именно она обеспечивает функциональные компенсаторные и мор­фологические связи коры большого мозга с полушариями мозжечка.

Сенсорные функции моста обеспечиваются ядрами преддверно-улиткового, тройничного нервов. Улитковая часть преддверно-улит­кового нерва заканчивается в мозге в улитковых ядрах; преддверная часть преддверно-улиткового нерва - в треугольном ядре, ядре Дейтерса, ядре Бехтерева. Здесь происходит первичный анализ ве­стибулярных раздражений их силы и направленности.

Чувствительное ядро тройничного нерва получает сигналы от рецепторов кожи лица, передних отделов волосистой части головы, слизистой оболочки носа и рта, зубов и конъюнктивы глазного яблока. Лицевой нерв (п. facialis) иннервирует все мимические мышцы лица. Отводящий нерв (п. abducens) иннервирует прямую латеральную мышцу, отводящую глазное яблоко кнаружи.

Двигательная порция ядра тройничного нерва (п. trigeminus) иннервирует жевательные мышцы, мышцу, натягивающую ба­рабанную перепонку, и мышцу, натягивающую небную зана­веску.

Проводящая функция моста. Обеспечивается продольно и по­перечно расположенными волокнами. Поперечно расположенные во­локна образуют верхний и нижний слои, а между ними проходят идущие из коры большого мозга пирамидные пути. Между попе­речными волокнами расположены нейронные скопления - ядра моста. От их нейронов начинаются поперечные волокна, которые идут на противоположную сторону моста, образуя среднюю ножку мозжечка и заканчиваясь в его коре.


36. Мозжечок (лат. cerebellum - дословно «малый мозг») - отдел головного мозга позвоночных, отвечающий за координацию движений, регуляцию равновесия и мышечного тонуса. У человека располагается позади продолговатого мозга и варолиева моста, под затылочными долями полушарий головного мозга. Посредством трёх пар ножек мозжечок получает информацию из коры головного мозга, базальных ганглиев экстрапирамидной системы, ствола головного мозга и спинного мозга. У различных таксонов позвоночных взаимоотношения с другими отделами головного мозга могут варьировать.

Схема мозжечка и соседних с ним структур головного мозга:
А. Средний мозг
B. Варолиев мост
С. Продолговатый мозг
D. Спинной мозг
Е. Четвёртый желудочек
F. «древо жизни» мозжечка
G. Миндалина мозжечка
H. Передняя доля мозжечка
I. Задняя доля мозжечка

Особенностью мозжечка человека, является то, что он так же как и головной мозг, состоит из правого и левого полушария (лат. hemispheria cerebelli ) и соединяющей их непарной структуры - «червя» (лат. vermis cerebelli ). Мозжечок занимает почти всю заднюю черепную ямку. Поперечник мозжечка (9-10 см) значительно больше его переднезаднего размера (3-4 см) .

Масса мозжечка у взрослого колеблется от 120 до 160 г. К моменту рождения мозжечок менее развит по сравнению с полушариями головного мозга, но на первом году жизни он развивается быстрее других отделов мозга. Выраженное увеличение мозжечка отмечается между 5-м и 11-м месяцами жизни, когда ребёнок учится сидеть и ходить. Масса мозжечка новорожденного составляет около 20 г, в 3 месяца она удваивается, в 5 месяцев увеличивается в 3 раза, в конце 9-го месяца - в 4 раза. Затем мозжечок растёт медленнее, и к 6 годам его масса достигает нижней границы нормы взрослого человека - 120 г .

Сверху над мозжечком лежат затылочные доли полушарий головного мозга. Мозжечок отделён от большого мозга глубокой щелью, в которую вклинивается отросток твёрдой оболочки головного мозга - намёт мозжечка (лат. tentorium cerebelli ), натянутый над задней черепной ямкой. Впереди мозжечка располагается мост и продолговатый мозг.

Червь мозжечка более короткий, чем полушария, поэтому на соответствующих краях мозжечка образуются вырезки: на переднем крае - передняя, на заднем крае - задняя. Наиболее выступающие участки переднего и заднего краёв образуют соответствующие передний и задний углы, а наиболее выступающие латеральные участки - латеральные углы .

Горизонтальная щель (лат. fissura horizontalis ), идущая от средних мозжечковых ножек к задней вырезке мозжечка, разделяет каждое полушарие мозжечка на две поверхности: верхнюю, относительно ровную и косо спускающуюся к краям, и выпуклую нижнюю. Своей нижней поверхностью мозжечок прилегает к продолговатому мозгу, так что последний вдавлен в мозжечок, образуя впячивание - долинку мозжечка (лат. vallecula cerebelli ), на дне которой располагается червь .

На черве мозжечка различают верхнюю и нижнюю поверхности. Идущие продольно по бокам червя бороздки: на передней поверхности - более мелкие, на задней - более глубокие - отделяют его от полушарий мозжечка .

Мозжечок состоит из серого и белого вещества. Серое вещество полушарий и червя мозжечка, расположенное в поверхностном слое, образует кору мозжечка (лат. cortex cerebelli ), а скопление серого вещества в глубине мозжечка - ядра мозжечка (лат. nuclei cerebelli ). Белое вещество - мозговое тело мозжечка (лат. corpus medullare cerebelli ), залегает в толще мозжечка и при посредстве трёх пар мозжечковых ножек (верхних, средних и нижних) связывает серое вещество мозжечка со стволом головного мозга и спинным мозгом .

[Червь

Червь мозжечка управляет позой, тонусом, поддерживающими движениями и равновесием тела. Дисфункция червя у человека проявляется в виде статико-локомоторной атаксии (нарушение стояния и ходьбы)

Ядра

Ядра мозжечка представляют собой парные скопления серого вещества, залегающие в толще белого, ближе к середине, то есть червю мозжечка. Различают следующие ядра:

зубчатое (лат. nucleus dentatus) залегает в медиальнонижних участках белого вещества. Это ядро представляет собой волнообразно изгибающуюся пластинку серого вещества с небольшим перерывом в медиальном отделе, который получил название ворот зубчатого ядра (лат. hilum nuclei dentati). Зубчатое ядро похоже на ядро оливы. Это сходство не случайно, так как оба ядра связаны проводящими путями, оливомозжечковыми волокнами (лат. fibrae olivocerebellares), и каждая извилина одного ядра аналогична извилине другого.

пробковидное (лат. nucleus emboliformis) расположено медиально и параллельно зубчатому ядру.

шаровидное (лат. nucleus globosus) залегает несколько медиальнее пробковидного ядра и на разрезе может быть представлено в виде нескольких небольших шариков.

ядро шатра (лат. nucleus fastigii) локализуется в белом веществе червя, по обеим сторонам от его срединной плоскости, под долькой язычка и центральной долькой, в крыше IV желудочка.

Ножки

C соседними мозговыми структурами мозжечок соединяется посредством трёх пар ножек. Ножки мозжечка (лат. pedunculi cerebellares ) представляют собой системы проводящих путей, волокна которых следуют к мозжечку и от него:

1. Нижние мозжечковые ножки (лат. pedunculi cerebellares inferiores ) идут от продолговатого мозга к мозжечку.

2. Средние мозжечковые ножки (лат. pedunculi cerebellares medii ) - от варолиева моста к мозжечку.

3. Верхние мозжечковые ножки (лат. pedunculi cerebellares superiores ) - направляются к среднему мозгу

Структура коры мозжечка: Кора мозжечка обладает большой поверхностью - в расправленном состоянии ее площадь составляет 17x20 см.

Кора мозжечка человека представлена тремя слоями: гранулярным слоем (самый глубокий), слоем клеток Пуркинье и молекулярным слоем (поверхностный) (рис. 40.10).

Молекулярный слой на свежих срезах испещрен мелкими точками (отчего и произошло его название). В нем расположены три типа нейронов - корзинчатые клетки, звездчатые клетки и клетки Лугаро. Направление аксонов клеток Лугаро неизвестно, аксоны корзинчатых клеток оканчиваются на теле (соме), а звездчатых - на дендритах клеток Пуркинье.

Звездчатые и корзинчатые клетки молекулярного слоя - это тормозные интернейроны с окончаниями на клетках Пуркинье. Проекции корзинчатых нейронов к клеткам Пуркинье ориентированы под прямым углом к длинной оси листков мозжечка. Эти аксоны называются поперечными волокнами (рис. 40.11).

Средний слой образован клетками Пуркинье, число которых у человека составляет 15 млн. Это крупные нейроны, их дендриты широко ветвятся в молекулярном слое. Аксоны клеток Пуркинье спускаются к ядрам мозжечка, и небольшое их количество заканчивается на вестибулярных ядрах. Это единственные аксоны, которые выходят из мозжечка. Организацию коры мозжечка принято рассматривать относительно клеток Пуркинье, образующих из него выход.

Нижний слой коры мозжечка называется гранулярным, так как на срезах имеет зернистый вид. Этот слой составляют мелкие клетки-зерна (около 1 000-10 000 млн), аксоны которых идут в молекулярный слой. Там аксоны Т- образно делятся, посылая в каждом направлении вдоль поверхности коры ветвь (параллельное волокно) длиной 1 -2 мм. Эти ветви проходят через области ветвления дендритов остальных типов нейронов мозжечка и образуют на них синапсы. В зернистом слое расположены также более крупные клетки Гольджи, дендриты которых распространяются на относительно далекие расстояния в молекулярном слое, а аксоны идут к клеткам-зернам.

Гранулярный слой примыкает к белому веществу мозжечка и содержит большое количество интернейронов (в том числе клетки Гольджи и клетки- зерна) около половины всех нейронов мозга. Моховидные волокна образуют в коре мозжечка возбуждающие синаптические окончания на дендритах клеток-зерен (гранулярных клеток) . На каждой гранулярной клетке конвергируют многие подобные волокна. Синаптические окончания собираются в так называемые мозжечковые гломерулы (клубочки). Они получают тормозные проекции от клеток Гольджи.

Аксоны гранулярных клеток поднимаются через слой клеток Пуркинье к молекулярному слою, где каждый из них разделяется на два параллельные волокна. Последние проходят вдоль длинной оси листка и оканчиваются возбуждающими синапсами на дендритах клеток Пуркинье и Гольджи, а также на интернейронах молекулярного слоя - звездчатых клетках и корзинчатых клетках. Каждое параллельное волокно образует синаптические контакты примерно с 50 клетками Пуркинье, а каждая клетка Пуркинье получает связи примерно от 200000 параллельных волокон.

В кору мозжечка входят два типа двигательных волокон. Лазящие (лиановидные) волокна проходят через зернистый слой и заканчиваются в молекулярном слое на дендритах клеток Пуркинье. Отростки лиановидных волокон оплетают дендриты этих клеток подобно ветвям плюща. К каждой клетке Пуркинье подходит только одно волокно, тогда как каждое лиановидное волокно иннервирует 10 - 15 нейронов Пуркинье. Все остальные афферентные пути мозжечка представлены гораздо более многочисленными (около 50 млн) моховидными (мшистыми) волокнами, оканчивающимися на клетках - зернах. Каждое мшистое волокно отдает множество коллатералей, благодаря чему одно такое волокно иннервирует множество клеток коры мозжечка. Вместе с тем к каждой клетке коры подходят многочисленные параллельные волокна от клеток-зерен, и поэтому через эти нейроны на любой клетке коры мозжечка конвергируют сотни мшистых волокон.

37. схема филогенеза головного мозга по Е. К. Сепп

наI этапе развития головной мозг состоит из трех отделов: заднего, среднего и переднего, причем из этих отделов в первую очередь (у низших рыб) особенно развивается задний, или ромбовидный, мозг (rhombencephalon). Развитие заднего мозга происходит под влиянием рецепторов акустики и гравитации (рецепторы VIII пары черепных нервов), имеющих ведущее значение для ориентации в водной среде.

В дальнейшей эволюции задний мозг дифференцируется на продолговатый мозг, являющийся переходным отделом от спинного мозга к головному и потому называемыйmyelencephalon (myelos - спинной мозг, епсeрhalon - головной ), и собственнозадний мозг - metencephalon , из которого развиваются мозжечок и мост.

В процессе приспособления организма к окружающей среде путем изменения обмена веществ в заднем мозге как наиболее развитом на этом этапе отделе центральной нервной системы возникают центры управления жизненно важными процессами растительной жизни, связанными, в частности, с жаберным аппаратом (дыхание, кровообращение, пищеварение и др.). Поэтому в продолговатом мозге возникают ядра жаберных нервов (группа X пары - вагуса). Эти жизненно важные центры дыхания и кровообращения остаются в продолговатом мозге человека, чем объясняется смерть, наступающая при повреждении продолговатого мозга. На II этапе (еще у рыб) под влиянием зрительного рецептора особенно развивается средний мозг, mesencephalon. На III этапе, в связи с окончательным переходом животных из водной среды в воздушную, усиленно развивается обонятельный рецептор, воспринимающий содержащиеся в воздухе химические вещества, сигнализирующие своим запахом о добыче, опасности и других жизненно важных явлениях окружающей природы.

39. Четвёртый желудочек головного мозга (лат. ventriculus quartus ) - один из желудочков головного мозга человека. Простирается от водопровода мозга (Сильвиева водопровода) до задвижки (лат. obex ), содержит спинномозговую жидкость. Из четвёртого желудочка спинномозговая жидкость попадает в субарахноидальное пространство посредством двух боковых отверстий Люшки и одного срединно расположенного отверстия Мажанди.

Дно четвёртого желудочка имеет форму ромба (другое название - «ромбовидная ямка»), образовано задними поверхностями моста ипродолговатого мозга. Над дном в виде шатра нависает крыша четвёртого желудочка.

40. Вентральнее от верхних и нижних холмиков крыши находится водопровод среднего мозга, окруженный центральным серым веществом

(про эволюцию смотреть билет 20, 21.)

41. Эпифи́з , или шишкови́дное тело - небольшой орган, выполняющий эндокринную функцию, считающийся составной частью фотоэндокринной системы; относится к промежуточному мозгу. Непарное образование серовато-красного цвета, расположенное в центре мозга между полушариями в месте межталамического сращения. Прикреплен к мозгу поводками (лат. habenulae ). Вырабатывает гормоны мелатонин, серотонин и адреногломерулотропин.

Анатомически принадлежит к надталамической области, или эпиталамусу. Эпифиз относится к диффузной эндокринной системе , однако часто его называют железой внутренней секреции (приписывая его принадлежность к гландулярной эндокринной системе). На основании морфологических признаков эпифиз причисляют к органам, находящимся за пределом гематоэнцефалического барьера.

До сих пор функциональная значимость эпифиза для человека недостаточно изучена. Секреторные клетки эпифиза выделяют в кровь гормон мелатонин, синтезируемый изсеротонина, который участвует в синхронизации циркадных ритмов (биоритмы «сон - бодрствование») и, возможно, влияет на все гипоталамо-гипофизарные гормоны, а также иммунную систему. Адреногломерулотропин (Farell 1959) стимулирует выработку альдостерона, биосинтез осуществляется путём восстановления серотонина.

К известным общим функциям эпифиза относят:

§ торможение выделения гормонов роста;

§ торможение полового развития и полового поведения;

§ торможение развития опухолей.

§ влияние на половое развитие и сексуальное поведение. У детей эпифиз имеет бо́льшие размеры, чем у взрослых; по достижении половой зрелости выработка мелатонина уменьшается.

42 .Ретикулярная формация - это формация, идущая от спинного мозга к таламусу в ростральном (к коре) направлении. Кроме участия в обработке сенсорной информации, ретикулярная формация оказывает активизирующее воздействие на кору головного мозга, контролируя таким образом деятельность спинного мозга. Впервые механизм воздействия ретикулярной формации на мышечный тонус был установлен Р.Гранитом (R.Granit): он показал, что ретикулярная формация способна изменять активность γ-мотонейронов, в результате чего их аксоны (γ-эфференты) вызывают сокращение мышечных веретён, и, как следствие, усиление афферентной импульсции от мышечных рецепторов. Эти импульсы, поступая в спинной мозг, вызывают возбуждение α-мотонейронов, что и является причиной тонуса мышц.

43. Промежу́точный мозг (Diencephalon) - отдел головного мозга.

В эмбриогенезе промежуточный мозг образуется на задней части первого мозгового пузыря. Спереди и сверху промежуточный мозг граничит с передним, а снизу и сзади - со средним мозгом.

Структуры промежуточного мозга окружают третий желудочек.

Структура:

Промежуточный мозг подразделяется на:

Таламический мозг (Thalamencephalon)

Подталамическую область или гипоталамус (hypothalamus)

Третий желудочек, который является полостью промежуточного мозга

Таламический мозг включает три части:

Зрительный бугор (Таламус)

Надталамическую область (Эпиталамус)

Заталамическую область (Метаталамус)

Гипоталамус подразделяется на четыре части:

Передняя гипоталамическая часть

Промежуточная гипоталамическая часть

Задняя гипоталамическая часть

Дорсо-латеральная гипоталамическая часть

Третий желудочек имеет пять стенок:

Латеральная стенка представлена зрительным бугром

Нижняя стенка представлена подталамической областью и частично ножками мозга

Задняя стенка представлена задней спайкой и шишковидным углублением

Верхняя стенка представлена сосудистой оболочкой III желудочка

Передняя стенка представлена столбами свода, передней спайкой и конечной пластинкой

Функции промежуточного мозга:

Движение, в том числе и мимика.

Обмен веществ.

Отвечает за чувство жажды, голода, насыщения.

44. Гипоталамус (лат. Hypothalamus ) или подбугорье - отдел головного мозга, расположенный ниже таламуса, или «зрительных бугров», за что и получил своё название.

Гипоталамус располагается спереди от ножек мозга и включает в себя ряд структур: расположенную спереди зрительную и обонятельную части. К последней относится собственно подбугорье, или гипоталамус, в котором расположены центры вегетативной части нервной системы. В гипоталамусе имеются нейроны обычного типа и нейросекреторные клетки. И те и другие вырабатывают белковые секреты и медиаторы, однако в нейросекреторных клетках преобладает белковый синтез, а нейросекрет выделяется в лимфу и кровь. Эти клетки трансформируют нервный импульс в нейрогормональный.

Гипоталамус контролирует деятельности эндокринной системы человека благодаря тому, что его нейроны способны выделять нейроэндокринные трансмиттеры (либерины и статины), стимулирующие или угнетающие выработку гормонов гипофизом. Иными словами, гипоталамус, масса которого не превышает 5% мозга, является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, второй - эффекторную роль.

45. Строение Гипофиса:

Гипофиз состоит из двух крупных различных по происхождению и структуре долей: передней - аденогипофиза (составляет 70-80 % массы органа) и задней - нейрогипофиза. Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз.

Продолговатый мозг, myelencephalon, medulla oblongata , представляет непосредственное продолжение спинного мозга в ствол головного мозга и является частью ромбовидного мозга. Он сочетает в себе черты строения спинного мозга и начального отдела головного, чем и оправдывается его название myelencephalon.

Medulla oblongata имеет вид луковицы, bulbus cerebri (отсюда термин «бульбарные расстройства»); верхний расширенный конец граничит с мостом, а нижней границей служит место выхода корешков I пары шейных нервов или уровень большого отверстия затылочной кости.

На передней (вентральной) поверхности продолговатого мозга по средней линии проходит fissura mediana anterior, составляющая продолжение одноименной борозды спинного мозга. По бокам ее на той и другой стороне находятся два продольных тяжа - пирамиды, pyramides medullae oblongatae, которые как бы продолжаются в передние канатики спинного мозга. Составляющие пирамиды пучки нервных волокон частью перекрещиваются в глубине fissura mediana anterior с аналогичными волокнами противоположной стороны - decussatio pyramidum, после чего спускаются в боковом канатике на другой стороне спинного мозга - tractus corticospinal (pyramidalis) lateralis, частью остаются неперекрещенными и спускаются в переднем канатике спинного мозга на своей стороне - tractus corticospinalis (pyramidalis) anterior. Пирамиды отсутствуют у низших позвоночных и появляются по мере развития новой коры; поэтому они наиболее развиты у человека, так как пирамидные волокна соединяют кору большого мозга, достигшую у человека наивысшего развития, с ядрами черепных нервов и передними рогами спинного мозга. Латерально от пирамиды лежит овальное возвышение - оливa, oliva, которая отделена от пирамиды бороздкой, sulcus anterolateral.

На задней (дорсальной) поверхности продолговатого мозга тянется sulcus medianus posterior - непосредственное продолжение одноименной борозды спинного мозга. По бокам ее лежат задние канатики, ограниченные латерально с той и другой стороны слабо выраженной sulcus posterolaterals. По направлению кверху задние канатики расходятся в стороны и идут к мозжечку, входя в состав его нижних ножек, pedunculi cerebellares inferiores, окаймляющих снизу ромбовидную ямку. Каждый задний канатик подразделяется при помощи промежуточной борозды на медиальный, fasciculus gracilis, и латеральный, fasciculus cuneatus. У нижнего угла ромбовидной ямки тонкий и клиновидный пучки приобретают утолщения - tuberculum gracilum и tuberculum cuneatum. Эти утолщения обусловлены соименными с пучками ядрами серого вещества, nucleus gracilis и nucleus cuneatus. В названных ядрах оканчиваются проходящие в задних канатиках восходящие волокна спинного мозга (тонкий и клиновидный пучки). Латеральная поверхность продолговатого мозга, находящаяся между sulci posterolateralis et anterolateralis, соответствует боковому канатику. Из sulcus posterolateralis позади оливы выходят XI, X и IX пары черепных нервов. В состав продолговатого мозга входит нижняя часть ромбовидной ямки.

Внутреннее строение продолговатого мозга. Продолговатый мозг возник в связи с развитием органов гравитации и слуха, а также в связи с жаберным аппаратом, имеющим отношение к дыханию и кровообращению. Поэтому в нем заложены ядра серого вещества, имеющие отношение к равновесию, координации движений, а также к регуляции обмена веществ, дыхания и кровообращения.

  1. Nucleus olivaris, ядро оливы , имеет вид извитой пластинки серого вещества, открытой медиально (hilus), и обусловливает снаружи выпячивание оливы. Оно связано с зубчатым ядром мозжечка и является промежуточным ядром равновесия, наиболее выраженным у человека, вертикальное положение которого нуждается в совершенном аппарате гравитации. (Встречается еще nucleus olivaris accessorius medialis.)
  2. Formatio reticularis, ретикулярная формация , образующаяся из переплетения нервных волокон и лежащих между ними нервных клеток.
  3. Ядра четырех пар нижних черепных нервов (XII-IX) , имеющие отношение к иннервации производных жаберного аппарата и внутренностей.
  4. Жизненно важные центры дыхания и кровообращения , связанные с ядрами блуждающего нерва. Поэтому при повреждении продолговатого мозга может наступить смерть.

Белое вещество продолговатого мозга содержит длинные и короткие волокна.

К длинным относятся проходящие транзитно в передние канатики спинного мозга нисходящие пирамидные пути, частью перекрещивающиеся в области пирамид. Кроме того, в ядрах задних канатиков (nuclei gracilis et cuneatus) находятся тела вторых нейронов восходящих чувствительных путей. Их отростки идут от продолговатого мозга к таламусу, tractus bulbothalamicus. Волокна этого пучка образуют медиальную петлю, lemniscus medialis, которая в продолговатом мозге совершает перекрест, decussatio lemniscorum, и в виде пучка волокон, расположенных дорсальнее пирамид, между оливами - межоливныи петлевой слой - идет далее.

Таким образом, в продолговатом мозге имеется два перекрестка длинных проводящих путей: вентральный двигательный, decussatio pyramidum, и дорсальный чувствительный, decussatio lemniscorum.

К коротким путям относятся пучки нервных волокон, соединяющие между собой отдельные ядра серого вещества, а также ядра продолговатого мозга с соседними отделами головного мозга. Среди них следует отметить tractus olivocerebellaris и лежащий дорсально от межоливного слоя fasciculus longitudindlis medialis. Топографические взаимоотношения главнейших образований продолговатого мозга видны на поперечном срезе, проведенном на уровне олив. Отходящие от ядер подъязычного и блуждающего нервов корешки делят продолговатый мозг на той и другой стороне на три области: заднюю, боковую и переднюю. В задней лежат ядра заднего канатика и нижние ножки мозжечка, в боковой - ядро оливы и formatio reticularis и в передней - пирамиды.

Продолговатый мозг (medulla oblongata) является продолжением спинного мозга. Структурная и функциональная организация его сложнее, чем у спинного мозга. В отличие от спинного мозга он не имеет метамерного, повторяемого строения, серое вещество в нем расположено не в центре, а ядрами к периферии.

В продолговатом мозге находятся оливы, связанные со спинным мозгом, экстрапирамидной системой и мозжечком - это тонкое и клиновидное ядра проприоцептивной чувствительности (ядра Голля и Бурдаха). Здесь же находятся перекресты нисходящих пирамидных путей и восходящих путей, образованных тонким и клиновидным пучками (Голля и Бурдаха), ретикулярная формация.

Продолговатый мозг участвует в реализации вегетативных, соматических, вкусовых, слуховых, вестибулярных рефлексов, обеспечивают выполнение сложных рефлексов, требующих последовательного включения разных мышечных групп, что наблюдается, например, при глотании. В продолговатом мозге расположены ядра некоторых черепно-мозговых нервов (8, 9, 10, 11, 12).

Сенсорные функции. Продолговатый мозг регулирует ряд сенсорных функций: рецепцию кожной чувствительности лица - в сенсорном ядре тройничного нерва; первичный анализ вкуса - в ядре языкоглоточного нерва; слуховых раздражений - в ядре улиткового нерва; вестибулярных раздражений - в верхнем вестибулярном ядре. В задневерхних отделах продолговатого мозга проходят пути кожной, глубокой, висцеральной чувствительности, часть из которых переключается здесь на второй нейрон (тонкое и клиновидное ядра). На уровне продолготоватого мозга перечисленные сенсорные функции реализуют первичный анализ силы и качества раздражения, далее обработаннаяинформация передается в подкорковые структуры для определения биологической значимости данного раздражения.

Проводниковые функции. Через продолготоватый мозг проходят все восходящие и нисходящие пути спинного мозга: спинно-таламический, кортикоспинальный, руброспинальный. В нем берут начало вестибулоспинальный, оливоспинальный и ретикулоспинальный тракты, обеспечивающие тонус и координацию мышечных реакций, заканчиваются пути из коры большого мозга - корковоретикулярные пути.

Такие образования головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус и кора большого мозга, имеют двусторонние связи с продолговатым мозгом. Наличие этих связей свидетельствует об участии продолговатого мозга в регуляции тонуса скелетной мускулатуры, вегетативных и высших интегративных функций, анализе сенсорных раздражений.

Рефлекторные функции. В продолговатом мозгу расположены жизненно важные центры - дыхательные и сосудодвигательные. Он организует и реализует ряд защитных рефлексов: рвоты, чиханья, кашля, слезоотделения, смыкания век, организуются рефлексы пищевого поведения: сосания, жевания, глотания.

Кроме того, продолговатый мозг участвует в формировании рефлексов поддержания позы. Эти рефлексы формируются за счет афферентации от рецепторов преддверия улитки и полукружных каналов в верхнее вестибулярное ядро; отсюда переработанная информация оценки необходимости изменения позы посылается к латеральному и медиальному вестибулярным ядрам. Эти ядра участвуют в определении того, какие мышечные системы, сегменты спинного мозга должны принять участие в изменении позы, поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы, участие которых в изменении позы в данный момент необходимо.

Изменение позы, положения, перемещения обеспечиваются за счет статических и статокинетических рефлексов. Статические рефлексы регулируют тонус скелетных мышц с целью удержания определенного положения тела. Статокинетические рефлексы вызывают перераспределение тонуса мышц туловища для сохранения позы и положения при ускоренных прямолинейных или вращательных движениях.

Большая часть вегетативных рефлексов продолговатого мозга реализуется через расположенные в нем ядра блуждающего нерва, которые получают информацию о состоянии деятельности сердца, сосудов, пищеварительного тракта, легких, и др. В ответ на эту информацию возникают двигательные и секреторные реакции названных органов. Возбуждение ядер блуждающего нерва вызывает усиление сокращения гладких мышц желудка, кишечника, желчного пузыря и одновременно расслабление сфинктеров этих органов. При этом замедляется и ослабляется работа сердца, сужается просвет бронхов.

В продолговатом мозге локализуется центр слюноотделения, парасимпатическая часть которого обеспечивает усиление общей секреции, а симпатическая - белковой секреции слюнных желез.

В структуре ретикулярной формации продолговатого мозга расположены дыхательный и сосудодвигательный центры. Особенность этих центров в том, что их нейроны способны возбуждаться рефлекторно и под действием химических раздражителей.

Дыхательный центр локализуется в медиальной части ретикулярной формации каждой симметричной половины продолговатого мозга и разделен на две части, вдоха и выдоха.

В ретикулярной формации продолговатого мозга представлен другой жизненно важный центр - сосудодвигательный центр (регуляции сосудистого тонуса). Он функционирует совместно с вышележащими структурами мозга и, прежде всего с гипоталамусом. Возбуждение сосудодвигательного центра всегда изменяет ритм дыхания, тонус бронхов, мышц кишечника, мочевого пузыря, и др. Это обусловлено тем, что ретикулярная формация продолговатого мозга имеет синаптические связи с гипоталамусом и другими центрами.

В средних отделах ретикулярной формации находятся нейроны, образующие ретикулоспинальный путь, оказывающий тормозное влияние на мотонейроны спинного мозга. На дне IV желудочка расположены нейроны «голубого пятна». Их медиатором является норадреналин. Эти нейроны вызывают активацию ретикулоспинального пути в фазу «быстрого» сна, что приводит к торможению спинальных рефлексов и снижению мышечного тонуса.

Повреждение продолговатого мозга чаще всего приводит к летальному исходу. Частичное повреждение левой или правой половины продолговато мозга выше перекреста восходящих путей проприоцептивной чувствительности вызывает на стороне повреждения нарушения чувствительности и работы мышц лица и головы. В то же время на противоположной стороне относительно стороны повреждения наблюдаются нарушения кожной чувствительности и двигательные параличи туловища и конечностей. Это объясняется тем, что восходящие и нисходящие проводящие пути из спинного мозга и в спинной мозг перекрещиваются, а ядра черепных нервов иннервируют свою половину головы, т.е. черепные нервы не перекрещиваются.

Ретикулярная формация моста является продолжением ретикулярной формации продолговатого мозга и началом этой же системы среднего мозга. Аксоны нейронов ретикулярной формации моста идут в мозжечок, в спинной мозг (ретикулоспинальный путь). Последние активируют нейроны спинного мозга. Ретикулярная формация моста влияет на кору большого мозга, вызывая ее активацию или сонное состояние. Здесь находятся две группы ядер, которые относятся к общему дыхательному центру. Один центр активирует центр вдоха продолговатого мозга, другой - центр выдоха. Нейроны дыхательного центра, расположенные в мосте, адаптируют работу дыхательных клеток продолговатого мозга в соответствии с меняющимся состоянием организма.

Является частью головного мозга, расположенной между спинным и .

Его строение отличается от строения спинного мозга, но в продолговатом мозге имеется ряд общих со спинным мозгом структур. Так, через продолговатый мозг проходят одноименные восходящие и нисходящие , соединяющие спинной мозг с головным. Ряд ядер черепных нервов располагается в верхних сегментах шейного отдела спинного мозга и в каудальной части продолговатого мозга. В то же время продолговатый мозг уже не имеет сегментарного (повторяемого) строения, его серое вещество не имеет непрерывной центральной локализации, а представлено в виде отдельных ядер. Центральный канал спинного мозга, заполненный цереброспинальной жидкостью, на уровне продолговатого мозга превращается в полость IV желудочка головного мозга. На вентральной поверхности дна IV желудочка располагается ромбовидная ямка, в сером веществе которой локализуется ряд жизненно важных нервных центров (рис. 1).

Продолговатый мозг выполняет реализуемые через соматическую и (или) автономную системы сенсорные, проводниковые, интегративные, двигательные функции, свойственные всей ЦНС. Двигательные функции могут выполняться продолговатым мозгом рефлекторно или он участвует в осуществлении произвольных движений. В осуществлении некоторых функций, получивших название жизненно важных (дыхания, кровообращения), продолговатый мозг играет ключевую роль.

Рис. 1. Топография расположения ядер черепных нервов в стволе мозга

В продолговатом мозге находятся нервные центры многих рефлексов: дыхания, сердечно-сосудистый, потоотделения, пищеварения, сосания, моргания, мышечного тонуса.

Регуляция дыхания осуществляется через , состоящий из нескольких групп , находящихся в различных участках продолговатого мозга. Этот центр расположен между верхней границей варолиева моста и нижним отделом продолговатого мозга.

Сосательные движения возникают при раздражении губных рецепторов новорожденного животного. Рефлекс осуществляется при раздражении чувствительных окончаний тройничного нерва, возбуждение которого переключается в продолговатом мозге на моторные ядра лицевого и подъязычного нервов.

Жевание рефлекторно возникает в ответ на раздражение рецепторов полости рта, передающих импульсы к центру продолговатого мозга.

Глотание - сложный рефлекторный акт, в осуществлении которого принимают участие мышцы полости рта, глотки и пищевода.

Моргание относится к защитным рефлексам и осуществляется при раздражении роговицы глаза и его конъюнктивы.

Глазодвигательные рефлексы способствуют комплексному движению глаз в различных направлениях.

Рвотный рефлекс возникает при раздражении рецепторов глотки и желудка, а также при раздражении вестибулорсцепторов.

Чихательный рефлекс возникает при раздражении рецепторов слизистой оболочки носа и окончаний тройничного нерва.

Кашель — защитный дыхательный рефлекс, возникающий при раздражении слизистой оболочки трахеи, гортани и бронхов.

Продолговатый мозг участвует в механизмах, благодаря которым достигается ориентировка животного в окружающей среде. За регуляцию равновесия у позвоночных ответственны вестибулярные центры. Вестибулярные ядра имеют особое значение для регуляции позы у животных, в том числе птиц. Рефлексы, обеспечивающие сохранение равновесия тела, осуществляются через центры спинного и продолговатого мозга. В экспериментах Р. Магнуса было установлено, что если перерезать головной мозг выше продолговатого, то при запрокидывании головы животного назад грудные конечности вытягиваются вперед, а тазовые подгибаются. В случае опускания головы грудные конечности сгибаются, а тазовые выпрямляются.

Центры продолговатого мозга

Среди многочисленных нервных центров продолговатого мозга особо важное значение имеют жизненно важные центры, от сохранности функций которых зависит жизнь организма. К ним относятся центры дыхания и кровообращения.

Таблица. Основные ядра продолговатого мозга и моста

Название

Функции

Ядра V-XII пар черепно- мозговых нервов

Сенсорные, моторные и вегетативные функции заднего мозга

Ядра тонкого и клиновидного пучка

Являются ассоциативными ядрами тактильной и проприоцептивной чувствительности

Ядро оливы

Является промежуточным центром равновесия

Дорсальное ядро трапецевидного тела

Имеет отношение к слуховому анализатору

Ядра ретикулярной формации

Активирующие и тормозные влияния на ядра спинного мозга и различные зоны коры головного мозга, а также образуют различные вегетативные центры (слюноотделительный, дыхательный, сердечно-сосудистый)

Голубое пятно

Его аксоны способны выбрасывать норадреналин диффузно в межклеточное пространство, изменяя возбудимость нейронов в тех или иных отделах головного мозга

В продолговатом мозге располагаются ядра пяти черепных пар нервов (VIII-XII). Ядра сгруппированы в каудальной части продолговатого мозга ниже дна IV желудочка (см. рис. 1).

Ядро XII пары (подъязычного нерва) располагается в области нижней части ромбовидной ямки и трех верхних сегментов спинного мозга. Представлено главным образом соматическими моторными нейронами, аксоны которых иннервируют мышцы языка. К нейронам ядра поступают сигналы по афферентным волокнам от сенсорных рецепторов мышечных веретен мышц языка. По своей функциональной организации ядро подъязычного нерва подобно двигательным центрам передних рогов спинного мозга. Аксоны холинергических мотонейронов ядра формируют волокна подъязычного нерва, следующие непосредственно к нервно-мышечным синапсам мышц языка. Они контролируют движения языка во время приема и обработки пищи, а также при осуществлении речи.

Повреждения ядер или самого подъязычного нерва вызывают парез или паралич мышц языка на стороне повреждения. Это может проявляться ухудшением или отсутствием движений половины языка на стороне повреждения; атрофией, фасцикуляциями (подергиваниями) мышц половины языка на стороне повреждения.

Ядро XI пары (добавочного нерва) представлено соматическими моторными холинергическими нейронами, расположенными как в продолговатом мозге, так и в передних рогах 5-6-го верхних шейных сегментов спинного мозга. Их аксоны формируют нервно-мышечные синапсы на миоцитах грудино-ключично-сосцевидной и трапециевидной мышц. С участием этого ядра могут осуществляться рефлекторные или произвольные сокращения иннервируемых мышц, ведущие к наклонам головы, подниманию плечевого пояса и смещению лопаток.

Ядро X пары (блуждающего нерва) — нерв является смешанным и сформирован афферентными и эфферентными волокнами.

Одним из ядер продолговатого мозга, куда поступают афферентные сигналы по волокнам блуждающего и волокнам VII и IX черепных нервов, является одиночное ядро. Нейроны ядер VII, IX и X пар черепных нервов входят в структуру ядра одиночного тракта. К нейронам этого ядра по афферентным волокнам блуждающего нерва проводятся сигналы главным образом от механореценторов нёба, глотки, гортани, трахеи, пищевода. Кроме того, к нему поступают сигналы от хеморецепторов сосудов о содержании газов в крови; механорецепторов сердца и барорецепторов сосудов о состоянии гемодинамики, рецепторов ЖКТ о состоянии пищеварения и другие сигналы.

В ростральную часть одиночного ядра, которую иногда называют вкусовым ядром, по волокнам блуждающего нерва поступают сигналы от вкусовых рецепторов. Нейроны одиночного ядра являются вторыми нейронами анализатора вкуса, получающего и передающего в таламус и далее в корковую область вкусового анализатора сенсорную информацию о вкусовых качествах.

Нейроны одиночного ядра посылают аксоны в обоюдное (двойное) ядро; дорсальное моторное ядро блуждающего нерва и центры продолговатого мозга, контролирующие кровообращение и дыхание, а через ядра моста — в амигдалу и гипоталамус. В одиночном ядре содержатся пептиды, энкефалин, субстанция Р, соматостатин, холецистокинин, нейропептид Y, имеющие отношение к контролю пищевого поведения и вегетативных функций. Повреждения в области одиночного ядра или одиночного тракта могут сопровождаться нарушениями пищевого поведения и нарушениями дыхания.

В составе волокон блуждающего нерва следуют афферентные волокна, проводящие сенсорные сигналы в спинальное ядро, тройничный нерв от рецепторов наружного уха, образованных чувствительными нервными клетками верхнего ганглия блуждающего нерва.

В составе ядра блуждающего нерва выделяют дорсальное моторное ядро(dorsal motor nucleus ) и вентральное моторное ядро, известное под названием обоюдное (n.ambiguus ). Дорсальное (висцеральное) моторное ядро блуждающего нерва представлено преганглионарными парасимпатическими холинергическими нейронами, которые посылают их аксоны латерально в состав пучков X и IX черепных нервов. Преганглионарные волокна заканчиваются холинергическими синапсами на ганглионарных парасимпатических холинергических нейронах, расположенных преимущественно в интрамуральных ганглиях внутренних органов грудной и брюшной полостей. Нейроны дорсального ядра блуждающего нерва регулируют работу сердца, тонус гладких миоцитов и желез бронхов и органов брюшной полости. Их эффекты реализуются через контроль выделения ацетилхолина и стимуляцию М-ХР клеток этих эффскторных органов. Нейроны дорсального моторного ядра получают афферентные входы от нейронов вестибулярных ядер, и при сильном возбуждении последних у человека может наблюдаться изменение частоты сокращений сердца, тошнота, рвота.

Аксоны нейронов вентрального моторного (обоюдного) ядра блуждающего нерва, вместе с волокнами языкоглоточного и добавочного нервов иннервируют мышцы гортани и глотки. Обоюдное ядро участвует в осуществлении рефлексов глотания, кашля, чихания, рвоты и регуляции высоты и тембра голоса.

Изменение тонуса нейронов ядра блуждающего нерва сопровождается изменением функции многих органов и систем организма, контролируемых парасимпатической нервной системой.

Ядра IX пары (языкоглоточного нерва) представлены нейронами СНС и АНС.

Афферентные соматические волокна IX пары нерва являются аксонами сенсорных нейронов, расположенных в верхнем ганглии блуждающего нерва. Они передают сенсорные сигналы с тканей заушной области в ядро спинального тракта тройничного нерва. Афферентные висцеральные волокна нерва представлены аксонами рецепторных нейронов боли, прикосновения, терморецепторов задней трети языка, миндалин и евстахиевой трубы и аксонами нейронов вкусовых луковиц задней трети языка, передающими сенсорные сигналы в одиночное ядро.

Эфферентные нейроны и их волокна формируют два ядра IX пары нерва: обоюдное и слюноотделительное. Обоюдное ядро представлено моторными нейронами АНС, аксоны которых иннервируют шилогортанную мышцу (t.stylopharyngeus ) гортани. Нижнее слюноотделительное ядро представлено преганглионарными нейронами парасимпатической нервной системы, которые посылают эфферентные импульсы к постганглионарным нейронам ушного ганглия, а последние контролируют образование и секрецию слюны околоушной железой.

Одностороннее повреждение языкоглоточного нерва или его ядер может сопровождаться отклонением нёбной занавески, потерей вкусовой чувствительности задней трети языка, нарушением или потерей глоточного рефлекса на стороне повреждения, инициируемого раздражением задней стенки глотки, миндалин или корня языка и проявляющегося сокращением мышцы языка и мышц гортани. Поскольку языкоглоточный нерв проводит часть сенсорных сигналов барорецепторов каротидного синуса в одиночное ядро, то повреждение этого нерва может вести к снижению или потере рефлекса с каротидного синуса на стороне повреждения.

В продолговатом мозге реализуется часть функций вестибулярного аппарата, что обусловлено расположением под дном IV желудочка четвертых вестибулярных ядер — верхнего, нижнего (сиинального), медиального и латерального. Они располагаются частично в продолговатом мозге, частично на уровне моста. Ядра представлены вторыми нейронами вестибулярного анализатора, к которым поступают сигналы от вестибулорецепторов.

В продолговатом мозге осуществляется передача и продолжается анализ звуковых сигналов, поступающих в кохлеарные (вентральное и дорзальное ядра). Нейроны этих ядер получают сенсорную информацию от слуховых рецепторных нейронов, расположенных в спиральном ганглии улитки.

В продолговатом мозге формируются нижние ножки мозжечка, через которые в мозжечок следуют афферентные волокна спиномозжечкового тракта, ретикулярной формации, олив, вестибулярных ядер.

Центрами продолговатого мозга, при участии которых выполняются жизненно важные функции, являются центры регуляции дыхания и кровообращения. Повреждение или нарушение функции инспираторного отдела дыхательного центра может вести к быстрой остановке дыхания и смерти. Повреждение или нарушение функции сосудодвигательного центра может вести к быстрому падению артериального давления крови, замедлению или остановке кровотока и смерти. Подробнее структура и функции жизненно важных центров продолговатого мозга рассмотрены в разделах физиологии дыхания и кровообращения.

Функции продолговатого мозга

Продолговатый мозг контролирует осуществление как простых, так и очень сложных процессов, требующих тонкой координации сокращения и расслабления множества мышц (например, глотания, поддержания позы тела). Продолговатый мозг выполняет функции : сенсорную, рефлекторную, проводниковую и интегративную.

Сенсорные функции продолговатого мозга

Сенсорные функции заключаются в восприятии нейронами ядер продолговатого мозга афферентных сигналов, поступающих к ним от сенсорных рецепторов, реагирующих на изменения во внутренней или внешней средах организма. Эти рецепторы могут быть образованы сенсоэпителиальными клетками (например, вкусовые, вестибулярные) или нервными окончаниями чувствительных нейронов (болевые, температурные, меха- норецепторы). Тела чувствительных нейронов располагаются в периферических узлах (например, спиральном и вестибулярном — чувствительные слуховые и вестибулярные нейроны; нижнем ганглии блуждающего нерва — чувствительные вкусовые нейроны языкоглоточного нерва) или непосредственно в продолговатом мозге (например, хеморецепторы СО 2 , и Н 2).

В продолговатом мозге проводится анализ сенсорных сигналов системы дыхания — газовый состав крови, рН, состояние растяжения легочной ткани, по результатам которого может оцениваться не только дыхание, но и состояние метаболизма. Оцениваются основные показатели кровообращения — работа сердца, артериальное давление крови; ряд сигналов пищеварительной системы — вкусовые показатели пищи, характер жевания, работа желудочно-кишечного тракта. Результатом анализа сенсорных сигналов является оценка их биологической значимости, которая становится основой для рефлекторной регуляции функций ряда органов и систем организма, контролируемых центрами продолговатого мозга. Например, изменение газового состава крови и цереброспинальной жидкости является одним из важнейших сигналов для рефлекторной регуляции вентиляции легких и кровообращения.

В центры продолговатого мозга поступают сигналы от рецепторов, реагирующих на изменения во внешней среде организма, например, терморецепторов, слуховых, вкусовых, тактильных, болевых рецепторов.

Сенсорные сигналы из центров продолговатого мозга проводятся но проводящим путям в вышележащие отделы головного мозга для их последующего более тонкого анализа и идентификации. Результаты этого анализа используются для формирования эмоциональных и поведенческих реакций, часть из проявлений которых реализуется с участием продолговатого мозга. Например, накопление в крови СО 2 , и снижение О 2 является одной из причин появления отрицательных эмоций, ощущения удушья и формирования поведенческой реакции, направленной на поиск более свежего воздуха.

Проводниковая функция продолговатого мозга

Проводниковая функция заключается в проведении нервных импульсов в самом продолговатом мозге, к нейронам других отделов ЦНС и к эффекторным клеткам. Афферентные нервные импульсы поступают в продолговатый мозг по одноименным волокнам VIII-XII пар черепных нервов от сенсорных рецепторов мышц и кожи лица, слизистых дыхательных путей и рта, интерорецепторов пищеварительной и сердечнососудистой систем. Эти импульсы проводятся в ядра черепных нервов, где они анализируются и используются для организации ответных рефлекторных реакций. Эфферентные нервные импульсы от нейронов ядер могут проводиться к другим ядрам ствола или других отделов мозга для осуществления более сложных ответных реакций ЦНС.

Через продолговатый мозг проходят чувствительные (тонкий, клиновидный, спиномозжечковые, спиноталамические) проводящие пути от спинного мозга к таламусу, мозжечку и ядрам ствола. Расположение этих путей в белом веществе продолговатого мозга сходно с таковым в спинном мозге. В дорсальном отделе продолговатого мозга располагаются тонкие и клиновидные ядра, на нейронах которых заканчиваются образованием синапсов одноименные пучки афферентных волокон, идущих от рецепторов мышц, суставов и тактильных рецепторов кожи.

В латеральной области белого вещества проходят нисходящие оливоспинальный, руброспинальный, тектоспинальный двигательные пути. От нейронов ретикулярной формации следует в спинной мозг ретикулоспинальный путь, а от вестибулярных ядер — вестибулоспинальный путь. В вентральной части проходит кортикоспинальный двигательный путь. Часть волокон нейронов двигательной коры заканчивается на двигательных нейронах ядер черепных нервов моста и продолговатого мозга, контролирующих сокращения мышц лица, языка (кортикобульбарный путь). Волокна кортикоспинального пути па уровне продолговатого мозга сгруппированы в образования, называемые пирамидами. Большинство (до 80%) этих волокон на уровне пирамид переходит на противоположную сторону, формируя перекрест. Остальная часть (до 20%) неперекрещенных волокон переходит на противоположную сторону уже на уровне спинного мозга.

Интегративная функция продолговатого мозга

Проявляется в реакциях, которые не могут быть отнесены к простым рефлексам. В его нейронах запрограммированы алгоритмы некоторых сложных регуляторных процессов, требующие для своего осуществления участия центров других отделов нервной системы и взаимодействия с ними. Например, компенсационное изменение положения глаз при колебаниях головы во время движения, реализуемое на основе взаимодействия ядер вестибулярной и глазодвигательной систем мозга с участием медиального продольного пучка.

Часть нейронов ретикулярной формации продолговатого мозга обладает автоматией, тонизирует и координирует активность нервных центров различных отделов ЦНС.

Рефлекторные функции продолговатого мозга

К важнейшим рефлекторным функциям продолговатого мозга можно отнести регуляцию тонуса мышц и позы, осуществление ряда защитных рефлексов организма, организацию и регуляцию жизненно важных функций дыхания и кровообращения, регуляцию многих висцеральных функций.

Рефлекторная регуляция тонуса мышц тела, поддержания позы и организации движений

Эту функцию продолговатый мозг выполняет совместно с другими структурами ствола мозга.

Из рассмотрения хода нисходящих проводящих путей через продолговатый мозг видно, что все они, за исключением кортикоспинального пути, начинаются в ядрах ствола мозга. Эти пути закапчиваются главным образом на у-мотонейронах и интернейронах спинного мозга. Поскольку последние играют важную роль в координации деятельности моторных нейронов, то через интернейроны можно контролировать состояние мышц-синергистов, агонистов и антагонистов, оказывать на эти мышцы реципрокные воздействия, вовлекать в работу не только отдельные мышцы, но и их целые группы, что позволяет подключать к простым движениям дополнительные. Таким образом, через влияние моторных центров ствола мозга на активность моторных нейронов спинного мозга можно решать более сложные задачи чем, например, рефлекторная регуляция тонуса отдельных мышц, которая реализуется на уровне спинного мозга. Среди таких двигательных задач, которые решаются при участии моторных центров ствола мозга, важнейшими являются регуляция позы и поддержание равновесия тела, реализуемые через распределение тонуса мышц в различных мышечных группах.

Позные рефлексы используются для поддержания определенной позы тела и реализуются через регуляцию сокращений мышц ретикулоспинальным и вестибулоспинальным путями. Эта регуляция основана на осуществлении позных рефлексов, находящихся под контролем высших корковых уровней ЦНС.

Выпрямительные рефлексы способствуют восстановлению нарушенных положений головы и тела. В эти рефлексы вовлечены вестибулярный аппарат и рецепторы растяжения мышц шеи и механорецепторы кожи и других тканей тела. При этом восстановление равновесия тела, например при поскальзывании, осуществляется так быстро, что только спустя некоторое мгновение после осуществления позного рефлекса мы осознаем, что произошло и какие движения мы осуществляли.

Наиболее важными рецепторами, сигналы от которых используются для осуществления позных рефлексов, являются: вестибулорецепторы; проприорецепторы суставов между верхними шейными позвонками; зрение. В осуществлении этих рефлексов в норме принимают участие не только моторные центры ствола мозга, но и моторные нейроны многих сегментов спинного мозга (исполнители) и кора (контроль). Среди позных рефлексов выделяют лабиринтные и шейные.

Лабиринтные рефлексы обеспечивают прежде всего удерживание постоянного положения головы. Они могут быть тоническими или фазическими. Тонические — поддерживают позу в заданном положении в течение длительного времени посредством контроля за распределением тонуса в различных мышечных группах, фазические — поддерживают позу главным образом при нарушении равновесия, контролируя быстрые, преходящие изменения напряжения мышц.

Шейные рефлексы отвечают главным образом за изменение напряжения мышц конечностей, возникающее при изменении положения головы относительно тела. Рецепторами, сигналы которых необходимы для осуществления этих рефлексов, являются проприорецепторы двигательного аппарата шеи. Это мышечные веретена, механорецепторы суставов шейных позвонков. Шейные рефлексы исчезают после рассечения задних корешков верхних трехшейных сегментов спинного мозга. Центры этих рефлексов располагаются в продолговатом мозге. Их формируют главным образом мотонейроны, которые своими аксонами образуют ретикулоспинальный и вестибулоспинальный пути.

Поддержание позы наиболее эффективно реализуется при совместном функционировании шейных и лабиринтных рефлексов. При этом достигается не только поддержание положения головы относительно тела, но положение головы в пространстве и на этой основе — вертикальная позиция тела. Лабиринтные вестибулорецепторы могут информировать только о позиции головы в пространстве, в то время как рецепторы шеи информируют о позиции головы относительно тела. Рефлексы с лабиринтов и с рецепторов шеи могут быть реципрокными относительно друг друга.

Скорость реакции при осуществлении лабиринтных рефлексов может быть оценена по факту. Уже примерно через 75 мс после начала падения начинается координированное сокращение мышц. Еще до приземления запускается рефлекторная двигательная программа, направленная на восстановление положения тела.

В удержании тела в равновесии большое значение имеет связь моторных центров ствола мозга со структурами зрительной системы и, в частности, тектоспинальный путь. Характер лабиринтных рефлексов зависит от того, открыты или закрыты глаза. Точные пути влияния зрения на позные рефлексы пока неизвестны, но очевидно, что они выходят на вестибулоспинальный путь.

Тонические позные рефлексы возникают при повороте головы или воздействии на мышцы шеи. Рефлексы зарождаются с рецепторов вестибулярного аппарата и рецепторов растяжения мышц шеи. В осуществление позных тонических рефлексов вносит вклад зрительная система.

Угловое ускорение головы активирует сенсорный эпителий полукружных каналов и вызывает рефлекторное движение глаз, шеи и конечностей, которые направлены в другую сторону по отношению к направлению движения тела. Например, если голова поворачивается влево, то глаза будут рефлекторно поворачиваться на тог же угол вправо. Возникающий рефлекс будет помогать поддерживать стабильность зрительного поля. Движения обоих глаз являются при этом содружественными и поворачиваются в одном направлении и на одинаковый угол. Когда поворот головы превышает предельный угол поворота глаз, глаза быстро возвращаются влево и находят новый зрительный объект. Если голова продолжает поворачиваться влево, это будет сопровождаться медленным поворотом глаз вправо, за которым следует быстрый возврат глаз налево. Эти чередующиеся медленные и быстрые движения глаз названы нистагмом.

Стимулы, вызывающие вращение головы влево, будут так же вести к повышению тонуса и сокращению экстензорных (антигравитационных) мышц слева, приводя к повышению устойчивости к какой-либо тенденции падения влево в процессе вращения головы.

Тонические шейные рефлексы являются разновидностью позных рефлексов. Они инициируются при раздражении рецепторов мышечных веретен шейных мышц, которые содержат самую большую концентрацию мышечных веретен по сравнению с какими-либо другими мышцами тела. Топические шейные рефлексы противоположны тем, что возникают при раздражении вестибулярных рецепторов. В чистом виде они проявляются в отсутствие вестибулярных рефлексов, когда голова находится в нормальной позиции.

Защитные рефлексы

Рефлекс чихания проявляется форсированным выдохом воздуха через нос и рот в ответ на механическое или химическое раздражение рецепторов слизистой оболочки полости носа. Выделяют назальную и респираторную фазы рефлекса. Назальная фаза начинается при воздействии на сенсорные волокна обонятельного и решетчатого нервов. Афферентные сигналы от рецепторов слизистой полости носа передаются по афферентным волокнам решетчатого, обонятельного и (или) тройничного нерва к нейронам ядра этого нерва в спинном мозге, одиночному ядру и нейронам ретикулярной формации, совокупность которых составляет понятие центра чихания. Эфферентные сигналы передаются по каменистому и крылонёбному нервам к эпителию и кровеносным сосудам слизистой носа и вызывают усиление их секреции при раздражении рецепторов слизистой носа.

Респираторная фаза рефлекса чихания инициируется в момент, когда при поступлении в ядро центра чихания афферентных сигналов их становится достаточно для возбуждения критического числа инспираторных и экспираторных нейронов центра. Эфферентные нервные импульсы, посылаемые этими нейронами, поступают к нейронам ядра блуждающего нерва, нейронам инспираторного и затем экспираторного отделов дыхательного центра и от последних — к моторным нейронам передних рогов спинного мозга, иннервирующим диафрагмальную, межреберные и вспомогательные дыхательные мышцы.

Стимуляция мышц в ответ на раздражение слизистой полости носа вызывает глубокий вдох, закрытие входа в гортань и затем форсированный выдох через рот и нос и удаление слизи и раздражающих веществ.

Центр чихания локализован в продолговатом мозге на вентромедиальной границе нисходящего тракта и ядра (спинальное ядро) тройничного нерва и включает нейроны примыкающей ретикулярной формации и одиночного ядра.

Нарушения рефлекса чихания могут проявляться его избыточностью или угнетением. Последнее встречается при психических заболеваниях и опухолевых заболеваниях с распространением процесса на центр чихания.

Рвота — это рефлекторное удаление содержимого желудка и в тяжелых случаях — кишечника во внешнюю среду через пищевод и ротовую полость, осуществляемое при участии сложной нервно-рефлекторной цепи. Центральным звеном этой цепи является совокупность нейронов, из которых состоит центр рвоты, локализованный в дорсолатсральной ретикулярной формации продолговатого мозга. В состав центра рвоты включают хеморецепторную триггерную зону в области каудальной части дна IV желудочка, в которой отсутствует или ослаблен гематоэнцефалический барьер.

Активность нейронов центра рвоты зависит от притока к нему сигналов от сенсорных рецепторов периферии или от сигналов, поступающих из других структур нервной системы. Непосредственно к нейронам центра рвоты поступают афферентные сигналы от вкусовых рецепторов и от стенки глотки по волокнам VII, IX и X черепных нервов; из желудочно-кишечного тракта — по волокнам блуждающего и спланхниче- ского нервов. Кроме того, активность нейронов центра рвоты определяется поступлением сигналов из мозжечка, вестибулярных ядер, слюноотделительного ядра, сенсорных ядер тройничного нерва, сосудодвигательного и дыхательного центров. Вещества центрального действия, вызывающие рвоту при их введении в организм, обычно не оказывают прямого влияния на активность нейронов центра рвоты. Они стимулируют активность нейронов хеморецепторной зоны дна IV желудочка, а последние стимулируют активность нейронов центра рвоты.

Нейроны центра рвоты эфферентными путями связаны с моторными ядрами, контролирующими сокращение мышц, принимающих участие в осуществлении рвотного рефлекса.

Эфферентные сигналы от нейронов центра рвоты поступают непосредственно к нейронам ядер тройничного нерва, дорсального моторного ядра блуждающего нерва, нейронам дыхательного центра; непосредственно или через дорсолатеральную покрышку моста — к нейронам ядер лицевого, подъязычного нервов обоюдного ядра, мотонейронам передних рогов спинного мозга.

Таким образом, рвота может инициироваться действием лекарств, токсинов или специфических рвотных средств центрального действия через их влияние на нейроны хеморецеиторной зоны и притоком афферентных сигналов от вкусовых рецепторов и интерорецепторов желудочно-кишечного тракта, рецепторов вестибулярного аппарата, а также из различных отделов головного мозга.

Глотание состоит из трех фаз: ротовой, глоточно-гортанной и пищеводной. В ротовую фазу глотания осуществляется проталкивание пищевого комка, сформированного из измельченной и смоченной слюной пищи ко входу в глотку. Для этого необходимо инициировать сокращение мышц языка для проталкивания пищи, подтягивание мягкого нёба и закрытие входа в носоглотку, сокращение мышц гортани, опускание надгортанника и закрытие входа в гортань. Во время глоточно- гортанной фазы глотания пищевой комок необходимо протолкнуть в пищевод и предотвратить попадание пищи в гортань. Последнее достигается не только через удерживание закрытым входа в гортань, но и торможением вдоха. Пищеводная фаза обеспечивается волной сокращения и расслабления в верхних отделах пищевода поперечно-полосатой, а в нижних — гладкой мускулатуры и завершается проталкиванием пищевого комка в желудок.

Из краткого описания последовательности механических событий одиночного цикла глотания видно, что его успешное осуществление может быть достигнуто только при точно скоординированном сокращении и расслаблении многих мышц полости рта, глотки, гортани, пищевода и при координации процессов глотания и дыхания. Эта координация достигается совокупностью нейронов, формирующих центр глотания продолговатого мозга.

Центр глотания представлен в продолговатом мозге двумя областями: дорсальной — одиночное ядро и рассеянные вокруг него нейроны; вентральной — обоюдное ядро и рассеянные вокруг него нейроны. Состояние активности нейронов этих областей зависит от афферентного притока сенсорных сигналов рецепторов полости рта (корень языка, ротоглоточная область), поступающих по волокнам языко глоточного и блуждающего нервов. К нейронам центра глотания поступают также эфферентные сигналы с префронтальной коры головного мозга, лимбической системы, гипоталамуса, среднего мозга, моста по нисходящим к центру путям. Эти сигналы позволяют контролировать осуществление ротовой фазы глотания, которая подконтрольна сознанию. Глоточно-гортанная и пищеводная фазы являются рефлекторными и осуществляются автоматически как продолжение ротовой фазы.

Участие центров продолговатого мозга в организации и регуляции жизненно важных функций дыхания и кровообращения, регуляции других висцеральных функций рассматривается в темах посвященных физиологии дыхания, кровообращения, пищеварения и терморегуляции.

Головной мозг человека – один из важнейших органов, который регулирует все стороны жизнедеятельности организма. Строение этого органа человека достаточно сложное – он состоит из множества участков, у каждого такого отдела есть определенные функции, которые он выполняет. Далее мы поговорим об одном из них - продолговатом мозге человека и обсудим все его функции.

Продолговатым мозгом человека называют важнейший участок головного мозга, который соединяет между собой головной и спинной мозг и выполняющий множество жизненно важных функций. Мы дышим, наше сердце работает, мы можем чихать, или кашлять, мы принимаем то или иное положение тела, совершенно об этом не задумываясь, а за выполнение всех перечисленных выше и многих других действий несет ответственность именно продолговатый участок мозга.

Примечательно, что по внешнему строению этот участок похож на луковицу. Его длина у взрослого человека примерно равна 2 – 3 сантиметрам. Он состоит из белого и серого вещества. Строение продолговатого мозга очень похоже на строение спинного мозга, но есть несколько существенных отличий. Например, белое вещество находится на поверхности, а серое – объединяется внутри в небольшие скопления, которые образуют ядра. Задняя поверхность продолговатого мозга имеет два канатика, которые являются продолжением спинного мозга. Таким образом, строение продолговатого мозга значительно сложнее, чем строение спинного мозга.

Рассмотрим строение продолговатого мозга более подробно.

Как уже говорилось, по внешнему виду этот участок очень похож на луковицу. На передней поверхности этого отдела, рядом со срединной щелью находятся пути сознательных двигательных импульсов, их еще часто называют «пирамиды» (они состоят из пирамидного тракта). Рядом с ними находятся оливы, состоящие из:

  • подкоркового ядра равновесия;
  • корешков подъязычного нерва, которые направлены к языковым мышцам;
  • нервных волокон;
  • серого вещества, образующего ядра.

В каждом ядре есть оливомозжечковый тракт, который образует своеобразные ворота. Помимо этого, в составе продолговатого мозга есть передняя боковая борозда, которая разделяет оливы и пирамиды между собой.

Недалеко от оливы находятся:

  • волокна языкоглоточного нерва;
  • волокна блуждающего нерва;
  • волокна добавочного нерва.

Сзади продолговатого мозга находятся два вида пучков:

  • парный тонкий;
  • клиновидный.

Эти два вида пучков являются продолжением спинного мозга.

Презентация: "Головной мозг"

Задачи продолговатого мозга

Данный участок головного мозга является проводником для множества рефлексов. Это:

  • Защитные (кашель, слезовыделение, рвота и прочие).
  • Рефлексы со стороны сосудов и сердца.
  • Рефлексы, отвечающие за регуляцию вестибулярного аппарата (ведь в нем находятся вестибулярные ядра).
  • Рефлексы системы пищеварения.
  • Рефлексы, отвечающие за вентиляцию легких.
  • Рефлексы тонуса мышц, которые отвечают за поддержание позы человека (их еще называют установочными).

Именно в данном отделе расположены следующие центры регуляции:

  • Центр регуляции слюноотделения, благодаря которому становится возможным увеличение объема и регуляция состава слюны.
  • Центр управления дыхательной функцией, в котором под действием химических раздражителей происходит возбуждение нейронов.
  • Сосудодвигательный центр, контролирующий тонус сосудов и работающий совместно с гипоталамусом.

Таким образом, мы видим, что продолговатый мозг участвует в обработке входящих данных, поступающих от всех рецепторов человеческого организма. Помимо этого он участвует в управлении двигательным аппаратом и мыслительных процессах. Головной мозг хоть и поделен на участки, каждый из которых отвечает за набор функций, все же является единым органом.

Презентация: "Головной мозг, его строение и функции"

Функции продолговатого мозга

Функции данного участка жизненно важны для человеческого организма, а любое их нарушение, даже самое незначительное, ведет к серьезным последствиям.

Данный отдел выполняет следующие функции:

  • сенсорные;
  • функции проводимости;
  • рефлекторные функции.

Сенсорные функции

В данном случае, отдел отвечает за чувствительность лица на уровне рецепторов, анализирует вкусовые и слуховые ощущений, а также восприятие вестибулярных раздражителей организмом.

Каким образом осуществляется данная функция?

Данный участок обрабатывает и отправляет в подкорку импульсы, которые поступают от внешних раздражителей (звуки, вкусы, запахи и другие).

Функции проводимости

Как известно, именно в продолговатом отделе находится множество восходящих и нисходящих путей. Именно благодаря им, данный участок способен передавать информацию в другие части мозга.

Рефлекторные функции

Рефлекторные функции бывают двух типов:

  • жизненно важные;
  • второстепенные.

Независимо от типа, данные рефлекторные функции появляются потому что данные о раздражителе передаются по нервным ветвям и попадают в продолговатый отдел, который обрабатывает и анализирует их.

Такие механизмы, как сосание, жевание и глотание, возникают вследствие переработки информации, передающейся по мышечным волокнам. Рефлекс позы возникает благодаря переработке информации о положении туловища. Статические и статокинетические механизмы регулируют и правильно распределяют тонус отдельных групп мышц.

Автономные рефлексы осуществляются благодаря строению ядер блуждающего нерва. Работа всего организма в целом преобразуется в ответную двигательную и секреторную реакцию того или иного органа.

Например, ускоряется или замедляется работа сердца, усиливается секреция внутренних желез, увеличивается слюноотделение.

Интересные факты о продолговатом отделе

Размеры и строение данного отдела изменяется с возрастом. Так, у новорожденных детей этот отдел значительно больше по отношению к другим, чем у взрослых. Полностью данный раздел формируется к семи годам.

Наверняка вы знаете, что разные стороны человеческого тела контролируются различными мозговыми полушариями и что правой стороной контролируется левая часть тела, а левой – правая. За перекрещивание нервных волокон отвечает именно продолговатый отдел.

Повреждения продолговатого отдела и их последствия. Последствия нарушения в данном отделе, достаточно серьезны, вплоть до смертельного исхода, ведь в нем находятся центры, осуществляющие контроль за работой сердечно-сосудистой и дыхательной систем. Кроме того, даже самые незначительные повреждения этого отдела могут привести к параличу.