Закономерности расположения проводящих путей спинного мозга. Функциональная анатомия спинного мозга

— это один из основных отделов центральной нервной системы. Его развитие начинается практически с первых минут внутриутробного формирования организма человека. Одним из элементов защиты спинномозгового тяжа являются оболочки спинного мозга. Он располагается в полости позвоночника. Благодаря относительной крепости позвонков спинной мозг сохраняет свою целостность.

Что представляет собой спинной мозг?

Тяж спинного мозга представляет собой столб. Он выглядит, как вытянутый цилиндр с заостренными концами. Удивительно, но такой важный элемент организма человека весит всего до 40 г. Начинается тяж у основания головного мозга (на уровне начала шейного отдела позвоночника), возле затылочной дыры. Граница между продолговатым и спинным мозгом находится близко к затылочному отверстию. Он заканчивается приблизительно на уровне первого или второго позвонков поясничного отдела позвоночника. Подходя к концу, он начинает сужаться, формируя конус, от которого вниз спускается тонкая нить спинного мозга — терминальная нить. В этой тонкой нити находятся нервные волокна. Конус спинного мозга уже напоминает большое скопление соединительной ткани, которая имеет три слоя. Концевая нить спинного отдела, которая идет от конуса спинного мозга, заканчивается чуть ниже второго позвонка поясничного отдела. Там она сходится с надкостницей. В этой области формируется конский хвост — скопление нервных окончаний спинномозгового тяжа, оплетающих нить с соединительной тканью.

Спинномозговой тяж имеет несколько сфер, которые покрывают его. Основные оболочки спинного мозга:

  • паутинная;
  • твердая;
  • мягкая.

Главный канал сначала покрыт мягким слоем, потом идет паутинный слой оболочки мозга. Его отростки проходят от главного канала через мягкий и твердый защитные слои оболочки спинного и головного мозга. Основные функции (питания и защиты) выполняются оболочками спинного и головного мозга.

Борозды и утолщения

Если рассматривать с позиции позвоночника, то шейный и поясничный отдел подвижны, а грудной отдел зафиксирован. Это связано с тем, что позвоночник в этом месте с ребрами защищает легкие, сердце и другие внутренние органы от повреждений. Именно в отделах, имеющих подвижность, есть большая вероятность повреждений.

По этой причине у спинномозгового тяжа в этих отделах имеются уплотнения. Это зоны шейного утолщения и пояснично-крестцового уплотнения. Более того, здесь находятся дополнительные скопления нервных окончаний. Их функция — иннервация верхних и нижних конечностей.

Спинномозговой тяж разделяется пополам щелями. Это борозды. Эти борозды симметричны (спереди и сзади). Передняя и задняя борозды спинного мозга — это границы. Например, спереди из него идет корешок движения, а эти борозды разделяются передними и сторонними канатами. Борозды имеют очень большое значение.

Вещество, сегменты и корешки

Спинномозговой тяж имеет передние и задние корешки. Это тоже нервные окончания. Передние корешки отходят от серого вещества ЦНС. Задние корешки — чувствительные клетки, проникающие в нервную систему, сплетаясь, передние и задние окончания формируют узлы.

Всего имеется 62 корешка. Они разветвляются в разные стороны по всему размеру спинного мозга. Получается по 31 корешку на каждую сторону. Сегмент — это уже часть спинномозгового тяжа, которая располагается между парными «вилками»-корешками. Соответственно, число спинных сегментов равно 31. На шейный отдел приходится 8 сегментов, на грудной — 12, на поясничный — 5 сегментов, на крестец — 5 сегментов и последний на копчик. Это отчасти сходится с количеством позвонков в организме человека, но все же спинной мозг короче позвоночника, поэтому некоторые сегменты не соответствуют их локализации, если сравнивать с позвонком.

В спинномозговой нервный тяж входят не только корешки-отростки. У него также есть белое и серое вещество. При этом уникальность заключается в том, что белое вещество идет только из нервных волокон спинного мозга, а вот серое вещество сформировалось не только клетками и волокнами спинного мозга, но и нервными окончаниями головного мозга.

Серое вещество

Белое вещество покрывает серое вещество. Внутри серого вещества находится главный канал. В свою очередь внутри главного канала есть ликвор. Если рассматривать поперечный срез спинного мозга, то белое вещество имеет очертание бабочки. Поперечный разрез позволяет подробно изучить структуру спинномозгового тяжа в поперечном направлении. Спинной мозг (главный канал) и головной мозг (его желудочки, место между оболочками) связаны не только нервными окончаниями, но еще и круговым движением спинномозговой жидкости. Спинномозговая жидкость регулируется нервными сплетениями, которые располагаются в желудочках спинного мозга. Регулирование ликвора (его выработка и обратное всасывание) происходит аналогичным образом.

Серое вещество — это общее название для столбов спинного мозга. Они скрепляются в одном месте. Эту зону называют пластиной. Это соединение серого цвета. В центре виден главный канал, в котором расположен спинной мозг. Таких зон скрепления столбов две: задняя и передняя. Они и расположены в задней и передней частях главного канала. На поперечном разрезе спинного мозга такие спайки напоминают по форме бабочку или букву Н.

При рассмотрении спинномозгового тяжа видно, как от серого вещества отходят выступления, которые именуются рогами спинного мозга. Они располагаются спереди и сзади. Располагающиеся спереди выступы — передние рога. Спереди имеются широкие парные, а сзади располагаются узкие парные рога. В передних рогах размещаются нейроны движения. Сами передние корешки сформированы из нейритов. Это и есть нейроны движения. В переднем роге есть ядро спинного мозга, и оно не одно. Ядра формируются из нейронов рога. В сумме должно быть пять центров-ядер: центральный, латеральные (2 шт.), медиальные (2 шт.). От них отростки направляются к мышцам.

Задние парные узкие рога имеют собственные ядра. Они располагаются в центре. Двигательные ядра формируются из вспомогательных вставочных нейронов. Аксоны — корешки этих нервных клеток. Они направляются к переднему рогу, образовывая связки. Они пересекаются с передним скреплением (спайкой), а потом переходят на переднюю сторону спинного мозга. Если вставочные нервные клетки достигают крупных размеров по сравнению с другими нейронами, то дендриты (их окончания) значительно разветвляются, формируя еще одно ядро. Это ядро располагается возле основы заднего рога. Узлы спинного мозга, которые располагаются между позвонками, включают в себя клетки-нейроны, которые имеют значительные отростки. Они достигают центров задних рогов.

Между рогами переднего и заднего отделов спинномозгового тяжа формируется промежуточный отдел. В этой зоне боковые ответвления (рога спинного мозга) расходятся от серого вещества. Этот феномен можно увидеть с восьмого шейного отдела до второго поясничного сегмента спинного мозга.

Эти ответвления имеют вещество, в состав которого входят исключительно нервные клетки. Их уникальность заключается в том, что они рассчитаны исключительно вегетативной нервной системой.

Белое вещество в мозгу

Канатики спинного мозга (три пары: передние, боковые и задние) создают белое вещество. Передние канатики располагаются между латеральной и медиальной щелями. Там выходят передние отростки. Боковые канатики находятся между двумя латеральными щелями. Задний канатик можно увидеть между латеральной и срединной щелями.

Нервные импульсы двигаются по нервным волокнам. Эти волокна формируются из-за белого вещества. Импульсы проходят в двух направлениях: вверх (до головного мозга) и вниз (в ).

Серое вещество тоже имеет нервные окончания, которые располагаются между сегментами. Эти недлинные окончания соединяют только близко расположенные по соседству отделы. Сегментарный аппарат спинного мозга — вот, что они формируют в совокупности. Их цель — осуществление связи между отделами спинного мозга.

Нейроны ганглиев формируют задние корешки спинного мозга. Часть из них связана с задним рогом, а остальные располагаются по бокам. Еще часть окончаний проходит к задним канатикам. Потом они направляются к головному мозгу. Это проводящие восходящие пути спинного органа.

Проводниковые функции нервов

Спинной мозг выполняет несколько очень важных функций, одна из них — проводниковая. Это означает, что по спинному мозгу двигаются импульсы с информацией к головному мозгу и другим органам (и наоборот).

Эта функция выполняется посредством белого вещества, нейронов и нервных волокон, из которых оно состоит. Эволюционное развитие спинного мозга привело к тому, что рефлекторная дуга постоянно усложнялась как основа нервной системы. Развитие дало возможность тому, что там, где раньше мог быть только один нейрон, стали постепенно появляться узлы нервных волокон, каждое из которых состояло из скопления нервных клеток.

Проводящие пути спинного органа — это совокупность нервных окончаний, которые имеют общие функции и схожее строение, развитие. Эти волокна связывают либо спинной и головной мозг, либо разные сегменты спинного мозга.

Все пути спинного мозга, в зависимости от функций, классифицируют как проекционные, ассоциативные и комиссуральные. Проекционные пути могут быть эфферентными и афферентными. Эти пути и являются основными в центральной нервной системе. Они могут быть восходящими и нисходящими. Нисходящие пути называют двигательными и центробежными. Восходящие пути носят название чувствительных и центростремительных. Восходящие волокна используют токи, которые идут от рецепторов и отвечают за факторы внешней и внутренней среды.

Проводящие пути восхождения разделяют на пути интеро- экстеро- и проприоцептивной чувствительности. Существует несколько основных пучков: путь Голля и Бурдаха, латеральный, дорсальный, вентральный. Тонкий и клиновидный пучки реагируют на осязание, простые движения, состояние тела в пространстве. Дорсолатеральный путь и таламический путь отвечают за контроль температуры и боли. Пучки Говерса и Флексига направлены на кожные рецепторы и рецепторы мышц, связок. Помимо этого, они ответственны за передачу импульсов при восприятии давления.

Нисходящее волокно проводит электрические токи от головного мозга к спинному, точнее, они переходят к ядрам движения, потом следует реакция.

Операции на спинном мозге

В основном операции на мозге и позвоночнике являются открытыми, только в некоторых, крайне редких случаях можно проводить закрытые вмешательства.

Наиболее распространено оперативное вмешательство, когда необходимо открыть заднюю поверхность спинного мозга (это ламинэктомия).

Также часто нужны ламинотопии — это операции, при которых можно обнажать позвоночник не на маленьком отрезке, а на большой площади.

Если необходима фиксация позвонков, то используются различные пластины и конструкции, но нужно делать срез в том месте.

При проведении операций на периферийной нервной системе используются обычные принципы. Делается срез, используется специальный микроскоп, который позволяет сшивать нервные окончания, если они были разорваны или нарушены.

Сейчас возможно использование протезов для некоторых, не самых значительных сегментов спинного мозга.

Операции проходят под наркозом. В некоторых случаях применяется местная анестезия. В зависимости от операции могут использоваться газообразные наркозы, ингаляции, электрические наркозы и прочее.

Реабилитация после операции может занимать разный период в зависимости от тяжести. Могут возникать следующие послеоперационные сопутствующие проблемы:

  • зуд и жжение в области разреза для операции;
  • головные боли и головокружения;
  • нарушения в речи, глотании, приступы, припадки, судороги.

Нужно обращаться к врачу для решения проблем. Ниже перечислены основные .

Симптомы и последствия атрофии

Атрофия спинного мозга — это процесс, при котором нервные волокна и клетки отмирают, разрушаются нервные соединения. Это явление может переходить от спинного мозга к головному мозгу.

Статистика показывает, что атрофия мозга чаще всего возникает у женщин после 50 лет. За несколько десятков лет человек может перейти к слабоумию. Но болезнь может завладеть и совсем маленькими детьми. Основа болезни заключается в том, что мозговая масса со временем уменьшается. Ученые считают, что причиной является наследственность.

Симптомы зависят от того, какой спинномозговой отдел будет поражен. Человек сначала перестает проявлять активность, становится вялым. Иногда может быть игнорирование моральных норм. Потом могут возникать проблемы с памятью, речью, органами чувств, моторикой, со временем теряется способность анализировать и создавать собственное мнение.

Несмотря на разработанные новые методики лечения, прогнозы для пациентов недостаточно благоприятные. Лучшим решением для лечения будут общение и хорошие отношения в семье. Из препаратов назначают витамины и лекарства для сосудов.

Нужно стараться сохранять активный образ жизни, здоровое и правильное питание.

Признаки менингиомы

Менингиома мозга — это опухоль, которая находится на канале позвоночника. Обычно она возникает из сосудистых тканей слоев мозга. Она чаще всего располагается практически у основания черепа. Часто она практически не растет долгий период. Менингиома спинного мозга имеет небольшие размеры и занимает не более нескольких позвонков. Но потом она может увеличиваться в длину вдоль позвоночника. В большинстве случаев менингиома доброкачественная, но бывает так, что она может стать злокачественной или атипичной.

Установлено, что опухоль может возникнуть и начать развиваться от ионизирующего излучения, во время беременности, и увеличиваться во время менструального цикла.

Для лечения можно использовать лучевые процедуры или хирургическое вмешательство. Химиотерапия не даст положительного результата, если опухоль доброкачественная. Метод лечения выбирается в зависимости от места и размера опухоли. Чаще всего в начале используются традиционные методы, чтобы уменьшить отечность в области новообразования.

Признаки ангиомы

Ангиома спинного мозга — это сильное локальное расширение сосудов. Со стороны оно выглядит, как красный клубок запутанных ниток. Такая аномалия могла возникнуть из-за наследственности. Ангиома может развиваться при рождении человека, а также в пожилом возрасте. Причиной ее внезапного появления могут быть травмы и инфекции.

Ангиома проявляется такими симптомами, как:

  • головные боли и головокружение;
  • нарушения зрения, памяти, координации движения;
  • шумы в голове;
  • судороги.

Ангиома подразделяется на такие виды: венозная, капиллярная, каверзная (клубок разных сосудов с тонкими стенками).

Если ангиома малого размера и не мешает, то ее можно и не удалять. В противном случае же сосуды специально закупориваются и удаляются, так их развитие не будет наблюдаться.

Признаки и последствия разрыва спинного мозга

Разрыв мозга очень трудно диагностируется. Место разрыва определяется вследствие того, что спинной мозг защищен не только позвоночником, но и мышечным основанием. Возникновение такого нарушения в функционировании нервной системы, как разрыв спинного мозга, способно привести к очень неприятным, тяжелым и непредсказуемым последствиям для человека.

Разрыв приводит к потере чувствительности, активности и частичному или полному параличу. Разрыв способен привести к полной или частичной инвалидности, что осложняет нормальную жизнь человека. К разрыву могут привести автокатастрофы, бытовые травмы и падения с большой высоты. Человек может испытать спинальный шок, когда отказывается работать весь организм. Такое часто приводит к летальному исходу.

Спинной мозг — это важный элемент человеческого организма. Лучше сразу проводить профилактику любых заболеваний и при опасениях обращаться к врачу.

Как уже отмечалось, в спинном мозге имеется целый ряд нейронов, дающих начало длинным восходящим путям к различным структурам головного мозга. В спинной мозг поступает и большое количество нисходящих трактов, образованных аксонами нервных клеток, локализующихся в коре больших полушарий, в среднем и продолговатом мозге. Все эти проекции наряду с путями, связывающими клетки различных спинальных сег­ментов, образуют систему проводящих путей, сформированных в виде белого вещества, где каждый тракт занимает вполне определенное положение.

Основные восходящие пути спинного мозга показаны на рис. 81 и в табл. 4. Часть из них представляет собой идущие без перерыва волокна первичных афферентных (чувствительных) нейронов. Эти волокна - тонкий (пучок Голля) и клиновидный (пучок Бурдаха) пучки идут в составе дорсальных канатиков белого вещества и заканчива­ются в продолговатом мозге возле нейронных релейных ядер, называемых ядрами дорсально­го канатика, или ядрами Голля и Бурдаха. Волокна дорсального канатика являются проводника­ми кожно-механической чувст- рис. 81. Локализация основных восходящих путей в белом вительности. веществе спинного мозга (схема). Объяснение в тексте.


Остальные восходящие пути начинаются от нейронов, расположенных в сером ве­ществе спинного мозга. Поскольку эти нейроны получают синаптические входы от первичных афферентных нейронов, их принято обозначать нейронами второго порядка, или вторичными афферентными нейронами. Основная масса волокон от вторичных афферентных нейронов проходит в составе латерального канатика белого вещества. Здесь расположен спиноталамический путь. Аксоны спиноталамических нейронов совер­шают перекрест и доходят не прерываясь через продолговатый и средний мозг до таламических ядер, где они образуют синапсы с нейронами таламуса. По спиноталамическим путям поступает импульсация от кожных рецепторов.

В латеральных канатиках проходят волокна спинно-мозжечковых трактов, дорсаль­ного и вентрального, проводящие в кору мозжечка импульсацию от кожных и мышеч­ных рецепторов.

В составе латерального канатика идут и волокна спиноцервикального тракта, окончания кото­рых образуют синапсы с релейными нейронами шейного отдела спинного мозга - нейронами


цервикального ядра. После переклю­чения в цервикальном ядре этот путь направляется в мозжечок и ядра ствола.

Путь болевой чувствитель­ности локализуется в вентраль­ных столбах белого вещества. Кроме того, в задних, боковых и передних столбах проходят собственные проводящие пути спинного мозга, обеспечиваю­щие интеграцию функций и реф­лекторную деятельность его цен­тров.

Нисходящие пути спинного мозга также разделяются на несколько самостоятельных тра­ктов, занимающих определенное положение в латеральных и вентральных канатиках белого вещества (рис. 82).

Эволюционно более древние нисходящие пути берут начало от нейронов, ядра кото­рых расположены в пределах продолговатого мозга и моста. Это ретикулоспинальный и вестибулоспинальный тракты. Ретикулоспинальный тракт образован аксонами нейро­нов ретикулярной формации заднего мозга.

Ретикулоспинальные волокна идут в составе латеральных и вентральных канатиков спинного мозга и заканчиваются на многих нейронах серого вещества, в том числе на а- и y-мотонейронах. Сходную локализацию имеют волокна вестибулоспинального тракта, являющиеся главным образом аксонами нейронов латерального вестибулярного ядра, или ядра Дейтерса. Оба эти тракта не перекрещиваются.

Эволюционно более молодым нисходящим путем является руброспинальный тракт, достигающий наибольшего развития только у млекопитающих. Руброспинальные волокна являются аксонами нейронов красного ядра, расположенного в среднем мозге. Руброспинальный тракт совершает перекрест и идет в составе латеральных канатиков белого вещества.

Окончания руброспинальных волокон занимают в сером веществе спинного мозга более дорсальное положение, чем окончание волокон ретикуло- и вестибулоспинального трактов. Тем не менее часть из этих волокон образует-синапсы непосредственно на мотонейронах.

Наиболее важный нисходящий путь - кортико-спинальный, или пирамидный, тракт, нейроны которого расположены в двигательной зоне больших полушарий. Пира­мидный тракт является Эволюционно самым молодым. Он появляется только у млекопи­тающих и наиболее развит у приматов и человека. Волокна пирамидного тракта соверша­ют перекрест и идут в составе дорсолатеральных канатиков над руброспинальным трактом. Окончания кортико-спинальных волокон обнаруживаются главным образом на вставочных нейронах спинного мозга. Пирамидные аксоны, устанавливающие прямые связи с мотонейронами, относятся к миелинизированным волокнам большого диаметра и проводят импульсы с высокой скоростью.

№ п/п Название пути Характеристика пути
Нисходящие Восходящие
Передние канатики
Передний корково-спинномозговой путь, tractus corticospinalis ventralis (anterior) Эфферентный (пирамидный)
Покрышечно-спинномозговой путь, tractus tectospinalis
Преддверно-спинномозговой путь, tractus vestibulospinalis Эфферентный (экстрапирамидный)
Ретикулярно-спинномозговой путь, tractus reticulospinalis Эфферентный (экстрапирамидный)
Задний продольный пучок, fasciculus longitudinalis dorsalis (posterior) Входит в структуру эфферентных путей
Передний спинно-таламический путь, tractus spinоthalamicus ventralis (anterior) Афферентный
Задние канатики
Тонкий пучок, fasciculus gracilis (пучок Голля) Афферентный
Клиновидный пучок, fasciculus cuneatus (пучок Бурдаха) Афферентный
Боковые канатики
Боковой спинно-таламический путь, tractus spinothalamicus lateralis Афферентный
Передний спинно-мозжечковый путь, tractus spinocerebеllaris ventralis (anterior), пучок Говерса Афферентный
Задний спинно-мозжечковый путь, tractus spinocerebellaris ventralis (posterior), пучок Флексига Афферентный
Латеральный корково-спинномозговой путь, tractus corticospinalis lateralis Эфферентный (пирамидный)
Красноядерно-спинномозговой путь, tractus rubrospinalis Эфферентный (экстрапирамидный)

Рис. 6. Проводящие пути спинного мозга: 1 – тонкий пучок (пучок Голля); 2 – клиновидный пучок (пучок Бурдаха); 3 – задний спинно-мозжечковый путь (пучок Флексига); 4 – латеральный корково-спинномозговой путь; 5 – красноядерно-спинномозговой путь; 6 – боковой спинно-таламический путь; 7 – задний предверно-спинномозговой путь; 8 – передний спинно-мозжечковый путь (пучок Говерса); 9 – ретикулярно-спинномозговой путь; 10 – преддверно-спинномозговой путь; 11 – передний спинно-таламический путь; 12 – передний корково-спинномозговой путь; 13 – покрышечно-спинномозговой путь; 14 – задний продольный пучок.


В белом веществе СМ на уровне шейных сегментов между передними и задними столбами, а на уровне верхнегрудных сегментов между боковыми и задними столбами располагается ретикулярная формация, formatiо reticularis, состоящая из редко расположенных нейронов с большим числом анастомозирующих отростков.

К структурам СМ относятся корешки (передние и задние). В каждом сегменте имеется по одной паре передних и задних корешков (рис. 1). Передний корешок, radix anterior, представляет совокупность аксонов двигательных нейронов, тела которых расположены в передних столбах СМ. На уровне сегментов С 8 – L 1–2 и S 2–4 в состав передних корешков входят также аксоны вегетативных нейронов, тела которых локализуются в боковых столбах.

Каждый задний корешок, radix posterior, представлен совокупностью аксонов (центральных отростков) псевдоуниполярных клеток, тела которых находятся в спинномозговых ганглиях, ganglia spinales. Ганглии располагаются у места соединения заднего корешка с передним. В пределах межпозвоночного отверстия нервные волокна передних корешков СМ начинают располагаться вместе с периферическими отростками псевдоуниполярных клеток спинномозговых узлов. Совокупность этих двух видов волокон образует спинномозговой нерв, nervus spinalis. Число пар спинномозговых нервов соответствует числу сегментов СМ, т. е. их 31 пара – 8 пар шейных спинномозговых нервов, 12 – грудных, 5 – поясничных, 5 – крестцовых и 1-3 –копчиковых. Их протяжённость равна длине межпозвоночных отверстий, в которых они пролегают.

Корешки поясничных, крестцовых и копчиковых сегментов, прежде чем достичь межпозвоночных отверстий, проходят некоторое расстояние в пределах позвоночного, а затем крестцового каналов. Совокупность этих корешков формирует конский хвост, cauda equina, внутри которого располагаются мозговой конус, conus medullaris, и терминальная нить, filum terminale.

Оболочки спинного мозга. СМ покрыт тремя оболочками, meninges, (рис. 7). Наружная – твёрдая мозговая оболочка, dura mater spinalis, под ней располагается паутинная оболочка, arachnoidea spinalis, и внутренняя – мягкая (сосудистая) оболочка, pia mater spinalis.

Твёрдая мозговая оболочка с внутренней поверхности покрыта эндотелием и соединена многочисленными перемычками с паутинной оболочкой. Между этими оболочками располагается субдуральная щелевидная полость, cavum subdurale, заполненная спинномозговой жидкостью и соединительнотканными волокнами.

Между твердой мозговой оболочкой и надкостницей позвонков находится эпидуральное пространство, cavum epidurale. В нём размещается жировая клетчатка и внутреннее позвоночное венозное сплетение.

Рис. 7. Оболочки спинного мозга: 1 – dura mater spinalis; 2 – cavitas epiduralis; 3 – arachnoidea mater spinalis; 4 – cavitas subarachnoidalis; 5 – pia mater spinalis; 6 – ganglion spinale; 7 – ligamentum denticulatum


Паутинная оболочка покрыта эндотелием с обеих сторон. Многочисленными перемычками она соединяется с сосудистой и твёрдой мозговыми оболочками. От паутинной оболочки во фронтальной плоскости отходят зубчатые связки, ligamenta denticulatа. В области межпозвоночных отверстий эти связки срастаются с обеими оболочками. В пределах конского хвоста перемычки и зубчатые связки отсутствуют.

Сосудистая оболочка прилегает непосредственно к СМ, заходит в переднюю срединную щель и во все его борозды. Снаружи она покрыта эндотелием. Между сосудистой и паутинной оболочками находится подпаутинное пространство, cavitas subarachnoidalis, которое несколько расширено вокруг конского хвоста, что получило название концевой цистерны, cisterna terminalis. Подпаутинное пространство содержит 120–140 мл спинномозговой жидкости.

Оболочки СМ и межоболочечные пространства со спинномозговой жидкостью обеспечивают механическую защиту органа, а сосудистая оболочка выполняет также трофическую функцию в отношении СМ.

Функции спинного мозга заключаются в проведении нервных импульсов и обеспечении безусловно-рефлекторной деятельности мускулатуры туловища и конечностей.

ГОЛОВНОЙ МОЗГ

CEREBRUM, греч. ENCEPHALON

Головной мозг (ГМ) с окружающими его оболочками находится в полости мозгового отдела черепа. Масса ГМ варьирует у взрослого человека от 1100 до 2000 г, в среднем 1320 г: у мужчин – 1394 г, у женщин – 1245 г. После 60 лет масса ГМ несколько уменьшается. В структуре ГМ (рис. 8) различают: конечный мозг, telencephalon; промежуточный – diencephalon; средний – mesencephalon; задний – metencephalon; продолговатый – medulla oblongata, греч. myelencephalon.

Продолговатый мозг

Мyelencephalon

Продолговатый мозг располагается между спинным и задним мозгом. Его длина в среднем равна 25 мм. Границу со СМ проводят по линии выхода 1-й пары спинномозговых нервов или по нижнему краю большого затылочного отверстия. Граница с задним мозгом проходит с вентральной поверхности по нижнему краю моста (рис. 9 а), а на дорзальной – по мозговым полоскам, stria medullaris IV желудочка (рис. 9 б). По форме продолговатый мозг напоминает усечённый конус или луковицу, что в прошлом послужило основанием назвать его луковицей мозга, bulbus cerebri (BNA), поэтому клинические симптомы, связанные с поражением ядерных структур продолговатого мозга, получили название бульбарных расстройств.


Рис. 9. Продолговатый мозг: а –вентральная, б –дорзальная поверхности; 1 – oliva; 2 – pyramis; 3 – sulcus anterolateralis; 4 – fissura mediana anterior; 5 – decussatio pyramidum; 6 – funiculus lateralis; 7 – tuberculum gracile; 8 – tuberculum cuneatum; 9 – fasciculus cuneatus; 10 – fasciculus gracilis; 11 – sulcus medianus posterior; 12 – pons; 13 – sulcus posterolateralis; 14 – pedunculus cerebellaris inferior; 15 – stria medullaris

Рис. 10. Задний мозг: 1 – pons; 2 – cerebellum; 3 – medulla oblongata; 4 – sulcus basillaris; 5 – pedunculus cerebellaris medius; 6 – pedunculus cerebri


В продолговатом мозге различают переднюю, заднюю и две боковые поверхности, а также переднюю срединную щель, fissura mediana ventralis (anterior) и пять борозд: непарная – задняя срединная борозда, sulcus medianus dorsalis (posterior), и парные – передние и задние боковые борозды, sulci ventrolaterales (anterolaterales), sulci dorsolaterales (posterolaterales), которые являются продолжением борозд СМ.

На передней поверхности продолговатого мозга между передней срединной щелью и передними боковыми бороздами располагаются пирамиды, pyramis, большинство волокон которых в нижнем отделе ПМ переходят на противоположную сторону и входят в состав боковых канатиков СМ. Неперекрещенные волокна вступают в передние канатики СМ. Указанный перекрест волокон получил название перекрест пирамид, decussatio pyramidum. В пирамидах проходят двигательные (пирамидные) пути.

Латеральнее пирамид располагается по оливе, oliva, внутри которых локализуются ядра оливы, nuclei olivarii. Эти ядра имеют множественные связи с мозжечком и СМ, что обусловливает их участие в поддержании равновесия. Между пирамидой и оливой из переднелатеральной борозды выходят корешки XII пары черепных нервов, nervi hypoglossi.

На задней поверхности продолговатого мозга между задней срединной и задними боковыми бороздами находятся задние канатики, идущие из СМ. Каждый канатик посредством промежуточной борозды, sulcus intermedius, делится на два пучка – тонкий, лежащий медиально, и клиновидный, расположенный латерально. Сверху пучки заканчиваются с обеих сторон одноименными бугорками – бугорки тонкого и клиновидного ядер, tubercula nucleorum gracile et cuneatum. Дорзальнее оливы из заднелатеральной борозды выходят черепные нервы: языкоглоточный, блуждающий и добавочный (IX, X и XI пары). Часть волокон, отходящих от нейронов тонкого и клиновидного ядер, образуют нижние мозжечковые ножки, соединяющие мозжечок с продолговатым мозгом. Эти ножки снизу и латерально ограничивают нижний треугольник ромбовидной ямки, в пределах которой находятся ядра IX–XII пар черепных нервов. Другая часть волокон формирует медиальную петлю, lemniscus medialis. Волокна правой и левой медиальных петель переходят на противоположную сторону, образуя перекрест медиальных петель, decussatio lemniscorum medialium. Над данным перекрестом располагается задний продольный пучок, fasciculus longitudinalis dorsalis (posterior).

Волокна тонкого и клиновидного путей, а также медиальной петли являются структурами анализатора проприоцептивной чувствительности. К путям проприоцептивной чувствительности относятся и пути в нижних ножках мозжечка.

В пределах продолговатого мозга располагается часть ретикулярной формации, в которой локализуются жизненно важные центры: сердечно-сосудистый (кровообращения) и дыхания.

Функции продолговатого мозга . Благодаря расположению в продолговатом мозге ядер IX–XII пар черепных нервов и ретикулярной формации, он обеспечивает реализацию следующих видов безусловных жизненно важных рефлексов:

1) защитных, связанных с кашлем, миганием, чиханием, рвотой, слезотечением;

2) пищевых, связанных с сосанием, глотанием, сокоотделением в пищеварительном тракте;

3) сердечно– сосудистых и дыхательных, обеспечивающих регуляцию работы сердца, сосудов и дыхательной мускулатуры;

4) установочных,связанных с перераспределением тонуса поперечно-полосатой мускулатуры;

5) эмоциональных, обеспечивающих отражение через мимику психического состояния человека.

Задний мозг

Metencephalon

Задний мозг каудально граничит с продолговатым, а краниально – со средним. Граница со средним мозгом проходит на вентральной поверхности по переднему краю моста, а на дорзальной – по нижним холмикам и их ручкам, о границе с продолговатым мозгом см. выше. Задний мозг включает мост и мозжечок (рис. 10). Продолговатый и задний мозг образуются из ромбовидного мозга, полостью которого является IV желудочек, ventriculus quartus.

Мост, pons (варолиев мост). Он прилегает к скату затылочной кости. На вентральной поверхности моста посередине располагается основная борозда, sulcus basillaris, в которой находится одноимённая артерия. На фронтальном разрезе моста (рис. 11) показано его внутреннее строение.

В центральной части находится мощный пучок поперечно расположенных волокон – трапециевидное тело, corpus trapezoideum. Между его волокнами находятся парные вентральные и дорзальные ядра, nuclei trapezoidei ventrales et dorsales. Волокна и ядра трапециевидного тела относятся к проводящим путям слухового анализатора.

Трапециевидное тело делит мост на вентральную (базилярную) часть, pars ventralis (basillaris) pontis, и дорзальную часть (покрышку) моста, pars dorsalis (tegmentum) pontis. В покрышке моста над трапециевидным телом справа и слева располагаются волокна медиальных петель, lemniscus medialis а латерально и выше их – латеральных петель, lemniscus lateralis. Ближе к середине над трапециевидным телом располагаются структуры ретикулярной формации, а ещё выше – задний продольный пучок, fasciculus longitudinalis dorsalis.



Рис. 11. Поперечный разрез моста: 1 – vellum medullare superius; 2 – pedunculus cerebellaris superior; 3 – corpus trapezoideum; 4 – sulcus basillaris; 5 – fasciculus longitudinalis dorsalis; 6 – lemniscus medialis; 7 – lemniscus lateralis; 8 – fibrae pontis longitudinales; 9 – n. trigeminus; 10 – n. abducens; 11 – n. facialis; 12 – ventriculus quartus


Рис. 12. Мозжечок, а – вид сверху: 1 – hemispheria cerebelli; 2 – vermis; 3 – fissura cerebelli; 4 – fissura horizontalis; 5 – folia cerebelli; б – горизонтальный разрез мозжечка: 1 – nucleus dentatus; 2 – nucleus emboliformis; 3 – nucleus globusus; 4 – nucleus fastigii; 5 – cortex cerebellaris; 6 – arbor vitae cerebelli; 7 – vermis


Кроме указанных структур в покрышке моста в границах верхнего треугольника ромбовидной ямки локализуются ядра 4 пар черепных нервов – V, VI, VII и VIII (nn. trigeminus, abducens, facialis et vestibulocochlearis). В базилярной части моста располагаются собственные ядра моста, nuclei pontis. Отростки нейронов этих ядер образуют пучки поперечных волокон моста, fibrae pontis transversae, которые входят в мозжечок, формируя его средние ножки. Границей между этими ножками и мостом является место прохождения корешка, n. trigeminus. В базилярной части моста проходят эфферентные пирамидные и экстрапирамидные пути.

Мозжечок (малый мозг), cerebellum , располагается над продолговатым мозгом и мостом, занимая полость задней черепной ямки. Сверху он граничит с затылочными долями полушарий большого мозга, от которого отделяется поперечной щелью большого мозга, fissura transversa cerebri.

В мозжечке различают верхнюю и нижнюю поверхности, разделенные горизонтальной щелью, fissura horizontalis. На нижней поверхности имеется углубление – долинка мозжечка, vallecula cerebelli, к которой прилегает продолговатый мозг.

Мозжечок состоит из 2 полушарий, hemispheria cerebelli, соединённых непарным образованием – червём, vermis cerebelli (рис. 12 а). Поверхность полушарий мозжечка и червя изрезана множеством поперечных щелей, между которыми находятся листки (извилины) мозжечка, folia cerebelli. Более глубокие борозды полушарий и червя отделяют друг от друга их дольки. Наиболее старой долькой полушарий, прилегающей к вентральной поверхности средних ножек мозжечка, является клочок, flocculus, который посредством своих ножек, pedunculi flocculi, соединяется с долькой червя, которая называется узелком, nodulus. Между узелком и ножками клочка располагаются дольки полушарий – миндалина мозжечка, tonsila cerebelli.

В полушариях и в черве мозжечка снаружи размещается серое вещество – cortex cerebelli, а под ним – белое вещество, в котором локализуются парные ядра мозжечка (рис. 12 б). В центре полушарий находится самое крупное зубчатое ядро, nucleus dentatus. На горизонтальном срезе полушарий оно имеет вид тонкой извилистой полоски, которая в медиальном направлении не замкнута. Это место называется воротами зубчатого ядра, hilum nuclei dentati, через которые входят волокна верхних мозжечковых ножек. В медиальном направлении от зубчатого ядра располагаются пробковидное и шаровидное ядра, nuclei emboliformis et globusus, а самое медиальное в черве над четвёртым желудочком – ядро шатра, nucleus fastigii.

На разрезах мозжечка и особенно на сагиттальном срединном разрезе червя его серое и белое вещество создают вид листка туи, вечнозелёного «живого» дерева, что побудило анатомов древности дать рисунку мифическое название – древо жизни, arbor vitae.


Мозжечок соединяется с другими отделами головного мозга посредством трёх пар ножек – верхних, нижних и средних (рис. 13). Верхние мозжечковые ножки, pedunculi cerebellaris superiores, соединяют мозжечок со средним мозгом. В них проходят проводящие пути проприоцептивной чувствительности, tractus spinocerebellaris anterior и волокна, связанные с экстрапирамидным путём, tractus rubrospinalis.

Нижние мозжечковые ножки, pedunculi cerebellares inferiores, соединяют мозжечок с продолговатым мозгом. В них проходят проводящие пути проприоцептивной чувствительности, tractus spinocerebellaris posterior, и волокна, связанные с экстрапирамидным путём, tractus vestibulospinalis, а также fibrae arcuatae externi (tr. bulbothalamicus, неперекрещенная часть).

Средние ножки мозжечка, pedunculi cerebellares medii – самые мощные ножки. Их волокна, под названием «мостомозжечковые пути», соединяют ядра моста с корой мозжечка и входят в состав корково-мостовых путей.

С позиции филогенеза в мозжечке морфологически и функционально выделяют три части.

1. Древняя, archicerebellum, – это клочок и ядро шатра. Они обеспечивают пространственную ориентацию тела и его частей, а также равновесие тела.

2. Старая, paleocerebellum, – червь, пробковидное и шаровидное ядра. Они обеспечивают регуляцию тонуса мышц и координацию движений туловища.

3. Новая, neocerebellum, – зубчатое ядро и полушария в целом. Данная часть мозжечка обеспечивает координацию произвольных движений конечностей.

Функции заднего мозга. Благодаря расположению в заднем мозге ядер V – VIII пар черепных нервов, ретикулярной формации и ядер мозжечка, он выполняет следующие функции.

1. Регуляция мышечного тонуса и обеспечение координации движений частей тела человека, делающей их плавными, точными, соразмерными.

2. Согласование быстрых (фазных) и медленных (тонических) компонентов двигательных актов, обеспечивающее равновесие тела и сохранение позы.

3. Поддержание стабильности ряда вегетативных функций, связанных с константами крови, работой пищеварительной системы, регуляцией сосудистого тонуса и обменных процессов.



Рис.13. Мозжечок, вид сбоку: 1 – pedunculus cerebri; 2 – lemniscus medialis; 3 – lemniscus lateralis; 4 – pons; 5 – pedunculus cerebellaris superior; 6 – pedunculus cerebellaris inferior



Рис. 14. Ромбовидная ямка. 1 – obex; 2 – recessus lateralis; 3 – sulcus medianus; 4 – eminentia medialis; 5 – sulcus limitans; 6 – colluculus facialis; 7 – trigonum nervi hypoglossi; 8 – trigonum nervi vagi; 9 – stria medullaris; 10 – area vestibularis; 11, 12, 13 – pedunculi cerebellares superior, medius et inferior


Похожая информация.


Связь спинного мозга с вышележащими отделами центральной нервной системы (мозговым стволом, мозжечком и большими полушарием осуществляется посредством восходящих и нисходящих проводящих путей . По восходящим путям передается информация, получаемая рецепторами.

Импульсы от мышц, сухожилий и связок проходят в вышележащие отделы центральной нервной системы частью по волокнам пучковГолля и Бурдаха, находящимся в задних столбах спинного мозга , частью по волокнам спино-мозжечковых путей Говерса и Флексига, расположенных в боковых столбах. Пучки Голля и Бурдаха образованы отростками рецепторных нейронов, тела которых находятся в спинномозговых ганглиях (рис. 227 ).

Эти отростки, войдя в спинной мозг , идут в восходящем направлении, отдавая короткие ветви к серому веществу нескольких выше и ниже расположенных сегментов спипного мозга. Эти ветви образуют синапсы на промежуточных и эффекторных нейронах, входящих в состав спинномозговых рефлекторных дуг. Пучки Голля и Бурдаха оканчиваются в ядрах продолговатого мозга, откуда начинается второй нейрон афферентного пути, направляющийся после перекреста к таламусу; здесь расположен третий нейрон, отростки которого проводят афферентные импульсы к коре больших полушарий (рис. 228 ).

За исключением тех волокон, которые входят в состав пучков Голля и Бурдаха и идут, не прерываясь, в продолговатый мозг, все остальные афферентные нервные волокна задних корешков вступают в серое вещество спинного мозга и здесь прерываются, т. е. образуют синапсы на различных нервных клетках. От так называемых столбовых, или кларковых, клеток заднего рога и отчасти от спайковых, или комиссуральных, клеток спинного мозга берут начало нервные волокна пучков Говерса и Флексига.

Нарушение проведения афферентных импульсов по спино-мозжечковым путям влечет за собой расстройство сложных движений, при которых наблюдаются нарушения мышечного тонуса и явления атаксии, как и при поражениях мозжечка.

Рис. 228. Схема проводящих путей задних столбов спинного мозга. 1 - тактильные рецепторы кожи; 2 - нежный пучок Голля (fasciculus gracilis); 3 - клиновидный пучок Бурдаха (fasciculus cuneatus); 4 - медиальная петля (lemniscus medians); 5 - перекрест медиальной петли; 6 - ядро Бурдаха в продолговатом мозгу; 7 - ядро Голля в продолговатом мозгу; СМ - спинной мозг (сегменты С8 и S1); ПМ - продолговатый мозг; ВМ - варолиев мост; ЗБ - зрительные бугры (видны ядра, особенно заднее вентральное, где заканчиваются волокна медиальной петли).

Импульсы от проприорецепторов распространяются по обладающим высокой скоростью проведения (до 140 м/сек) толстым миелиновым волокнам группы Аα, образующим спино-мозжечковые пути, и по более медленно проводящим (до 70 м/сек) волокнам пучков Голля и Бурдаха. Большая скорость проведения импульсов от рецепторов мышц суставов и сухожилий, очевидно, связана с важностью для организма быстрого получения информации о характере выполняемого двигательного акта, что обеспечивает непрерывный его контроль.

Импульсы от болевых и температурных рецепторов поступают к клеткам задних рогов спинного мозга; отсюда начинается второй нейрон афферентного пути. Отростки этого нейрона на уровне этого же сегмента, где расположено тело нервной клетки, переходят на противоположную сторону, вступают в белое вещество боковых столбов и в составе латерального спино-таламического пути (см. рис. 227 ) идут к зрительному бугру, где начинается третий нейрон, проводящий импульсы к коре больших полушарий. Импульсы от болевых и температурных рецепторов частично проводятся и по волокнам, направляйся кверху по задним рогам серого вещества спинного мозга. Проводники болевой и температурной чувствительности представляют собой тонкие миелиновые волокна группы АΔ и безмиелиновые волокна, отличающиеся малой скоростью проведения.

При некоторых поражениях спинного мозга могут наблюдаться расстройства только болевой или только температурной чувствительности. Более того, может быть нарушена чувствительность только к теплу или только к холоду. Это доказывает, что импульсация от соответствующих рецепторов проводится в спинном мозгу по нервным волокнам.

Импульсы от тактильных рецепторов кожи поступают к клеткам задних рогов, отростки которых восходят по серому веществу на несколько сегментов, переходят на противоположную сторону спинного мозга, вступают в белое вещество и в вентрального спино-таламического пути несут импульсь к ядрам зрительных бугров, где находится третий нейрон, передающий получаемую им информацию коре больших полушарий. Импульсы от кожных рецепторов прикосновения и давления частично проходят также по пучкам Голля и Бурдаха.

Имеются существенные различия в характере информации, доставляемой волоканми пучков Голля и Бурдаха и волокнами спино-таламических путей, а также в скорости распространения импульсов по тем и другим. По восходящим путям задних столбов передаются импульсы от рецепторов прикосновения, обеспечивающие возможность точной локализации места раздражения. Волокна этих путей проводят также импульсы большой частоты, возникающие при действии вибрации на рецепторы. Здесь же проводятся импульсы от рецепторов давления, дающие возможность точного определения интенсивности раздражения. По спино-таламическим путям проводятся импульсы от рецепторов прикосновения, давления, а также от температурных и болевых рецепторов, не обеспечивающие точной дифференцировки локализации и интенсивности раздражения.

Волокна, проходящие в пучках Голля и Бурдаха, передающие более дифференцированную информацию о действующих раздражениях, проводят импульсы с большей скоростью, причем частота этих импульсов может меняться в значительных пределах. Волокна спино-таламических путей обладают малой скоростью проведения; при разной силе раздражения частота импульсов, проходящих в них, мало меняется.

Импульсы, которые проводятся по афферентным путям, генерируют, как правило, возбуждающий постсинаптический потенциал, достаточно сильный для того, чтобы вызвать возникновение распространяющегося импульса в следующем нейроне восходящего афферентного пути. Однако импульсы, переходящие с одного нейрона на другой, могут затормаживаться, если в данный момент центральная нервная система получает по другим афферентным проводникам какую-либо более важную для организма информацию.

По нисходящим путям спинного мозга поступают к нему импульсы от вышележащих эффекторных центров. Получая импульсы по нисходящим путям от центров головного мозга и передавая эти импульсы к рабочим органам, спинной мозг выполняет проводниково-исполнительскую роль.

По кортикоспинальным, или пирамидным, путям, проходящим в передних боковых столбах спинного мозга, к нему приходят импульсы непосредствено от крупных пирамидных клеток коры больших полушарий. Волокна пирамидных путей образуют синапсы на промежуточных и моторных нейронах (прямая связь пирамидных нейронов с мотонейронами имеется только у человека и обезьян). В составе кортикоспинальных путей имеется около миллиона нервных волокон, среди которых около 3%составляют толстые волокна диаметром 16 мк, относящиеся к типу Аα и обладают большой скоростью проведения (до 120-140 м/сек). Эти волокна представляют собой отростки крупных пирамидных клеток коры. Остальные волокна имеют диаметр около 4 мк и обладают гораздо меньшей скоростью проведения. Значительное количество этих волокон проводит импульсы к спинальным нейронам вегетативной нервной системы.

Кортикоспинальные пути боковых столбов перекрещиваются на уровне нижней трети продолговатого мозга. Кортикоспинальные пути передних столбов (так называемые прямые пирамидные пути) не перекрещиваются в продолговатом мозгу; они переходят на противоположную сторону вблизи того сегмента, где заканчиваются. В связи с этим перекрестом кортикоспинальных путей нарушения моторных центров одного полушария вызывают паралич мускулатуры противоположной стороны тела.

Через некоторое время после повреждения пирамидных нейронов или идущих от них нервных волокон кортикоспинального тракта возникают некоторые патологические рефлексы. Типичным симптомом поражения пирамидных путей является извращенный кожно-подошвенный рефлекс Бабинского. Он проявляется в том, что штриховое раздражение подошвенной поверхности стопы вызывает разгибание большого пальца и веерообразное расхождение остальных пальцев ноги; такой рефлекс получается также и у новорожденных, у которых пирамидные пути еще не закончили своего развития У здоровых взрослых людей штриховое раздражение кожи подошвы вызывает рефлекторное сгибание пальцев.

В синапсах, образованных волокнами кортикоспинального тракта, могут возникать как возбуждающие, так и тормозящие постсинаптические потенциалы. В результате может возникать возбуждение или торможение мотонейронов.

Аксоны пирамидных клеток, образующие кортикоспинальные пути, отдают коллатерали, которые заканчиваются в ядрах полосатого тела, гипоталамуса, и красном ядре, в мозжечке, в ретикулярной формации мозгового ствола. От всех перечисленных ядер импульсы по нисходящим путям, называемым экстракортикоспинальными, или экстрапирамидными, поступают к вставочным нейронам спинного мозга. Главными из этих нисходящих путей являются ретикуло-спинальный, рубро-спинальный, текто-спинальный и вестибуло-спинальный тракты. По рубро-спинальному тракту (пучку Монакова) к спинному мозгу поступают импульсы от мозжечка, четверохолмия и подкорковых центров. Импульсы, проходящие по этому пути, имеют значение в координации движении и регуляции тонуса мышц.

Вестибуло-спинальный тракт идет от вестибулярных ядер в продолговатом мозгу к клеткам переднего рога. Импульсы, приходящие по этому пути, обеспечивают осуществление тонических рефлексов положения тела. Ретикуло-спинальные пути передают активирующее и тормозящее влияния ретикулярной формации на нейроны спинного мозга. Они оказывают влияние- как на моторные, так и на промежуточные нейроны. Кроме всех этих длинных нисходящих путей (в белом веществе спинного мозга), имеются еще и короткие пути, связывающие вышележащие сегменты с нижележащими.

В нервной системе нервные клетки не лежат изолированно. Они вступают в контакт друг с другом, образуя цепи нейронов - проводников импульсов. Длинный отросток одного нейрона - нейрит (аксон) вступает в контакт с короткими отростками (дендритами) или телом другого, следующего в цепи нейрона.

По цепям нейронов нервные импульсы движутся в строго определенном направлении, что обусловлено особенностями строения нервных клеток и синапсов («динамическая поляризация»). Одни цепи нейронов несут импульс в центростремительном направлении - от места возникновения на периферии (в коже, слизистых оболочках, органах, стенках сосудов) к ЦНС (спинному и головному мозгу). Первым в этой цепи является чувствительный (афферентный) нейрон, воспринимающий раздражение и трансформирующий его в нервный импульс. Другие цепи нейронов проводят импульс в центробежном направлении - от головного или спинного мозга на периферию, к рабочему органу. Нейрон, передающий импульс рабочему органу, является эфферентным.

Цепи нейронов в живом организме образуют рефлекторные дуги.

Рефлекторная дуга - это цепь нервных клеток, обязательно включающая первый - чувствительный и последний - двигательный (или секреторный) нейроны, по которым импульс движется от места возникновения к месту приложения (мышцы, железы и другие органы, ткани). Наиболее простыми рефлекторными дугами являются двух- и трехнейронные, замыкающиеся на уровне одного сегмента спинного мозга. В трехнейронной рефлекторной дуге первый нейрон представлен чувствительной клеткой, по которой импульс от места возникновения в чувствительном нервном окончании (рецепторе), лежащем в коже или в других органах, движется вначале по периферическому отростку (в составе нерва). Затем импульс движется по центральному отростку в составе заднего корешка спинномозгового нерва, направляясь к одному из ядер заднего рога спинного мозга, или по чувствительным волокнам черепных нервов к соответствующим чувствительным ядрам. Здесь импульс передается следующему нейрону, отросток которого направляется из заднего рога в передний, к клеткам ядер (двигательных) переднего рога. Этот второй нейрон выполняет проводниковую (кондукторную) функцию. Он передает импульс от чувствительного (афферентного) нейрона к третьему - двигательному (эфферентному). Кондукторный нейрон является вставочным нейроном, так как находится между чувствительным нейроном, с одной стороны, и двигательным (или секреторным) - с другой. Тело третьего нейрона (эфферентного, эффекторного, двигательного) лежит в переднем роге спинного мозга, а его аксон - в составе переднего корешка, а затем спинномозгового нерва простирается до рабочего органа (мышцы).

С развитием спинного и головного мозга усложнились и связи в нервной системе. Образовались многонейронные сложные рефлекторные дуги, в построении и функциях которых участвуют нервные клетки, расположенные в вышележащих сегментах спинного мозга, в ядрах мозгового ствола, полушарий и даже в коре большого мозга. Отростки нервных клеток, проводящих нервные импульсы из спинного мозга к ядрам и коре головного мозга и в обратном направлении, образуют пучки (fasciculi).

Пучки нервных волокон, соединяющие функционально однородные или различные участки серого вещества в ЦНС, занимающие в белом веществе головного и спинного мозга определенное место и проводящие одинаковый импульс, получили название проводящих путей.

В спинном и головном мозге по строению и функции выделяют три группы проводящих путей: ассоциативные, комиссуральные и проекционные.

Ассоциативные нервные волокна (neurofibrae associations) соединяют участки серого вещества, различные функциональные центры (кора мозга, ядра) в пределах одной половины мозга. Выделяют короткие и длинные ассоциативные волокна (пути). Короткие волокна соединяют близлежащие участки серого вещества и располагаются в пределах одной доли мозга (внутридолевые пучки волокон). Некоторые ассоциативные волокна, соединяющие серое вещество соседних извилин, не выходят за пределы коры (интракортикальные). Они дугообразно изгибаются в виде буквы 0 и называются дугообразными волокнами большого мозга (fibrae arcuatae cerebri). Ассоциативные нервные волокна, выходящие в белое вещество полушария (за пределы коры), называют экстракортикальными.

Длинные ассоциативные волокна связывают участки серого вещества, далеко отстоящие друг от друга, принадлежащие различным долям (междолевые пучки волокон). Это хорошо выраженные пучки волокон, которые можно видеть на макропрепарате головного мозга. К длинным ассоциативным путям относятся следующие: верхний продольный пучок (fasciculus longitudinalis superior), который находится в верхней части белого вещества полушария большого мозга и соединяет кору лобной доли с теменной и затылочной; нижний продольный пучок (fasciculus longitudinalis inferior), лежащий в нижних отделах полушария и соединяющий кору височной доли с затылочной; крючков,идный пучок (fasciculus uncinatus), который, дугообразно изгибаясь впереди островка, соединяет кору в области лобного полюса с передней частью височной доли. В спинном мозге ассоциативные волокна соединяют клетки серого вещества, принадлежащего различным сегментам, и образуют передние, латеральные и задние собственные пучки (межсегментные пучки) (fasciculi proprii ventrales, s. anteriores lateralis, dorsrales, s. posteriores). Они располагаются непосредственно возле серого вещества. Короткие пучки связывают соседние сегменты, перекидываясь через 2-3 сегмента, длинные пучки соединяют далеко отстояшие друг от друга сегменты спинного мозга.

Комиссуральные (спаечные) нервные волокна (neurofibrae commissurales) соединяют серое вещество правого и левого полушарий, аналогичные центры правой и левой половин мозга с целью координации их функций. Комиссуральные волокна проходят из одного полушария в другое, образуя спайки (мозолистое тело, спайка свода, передняя спайка). В мозолистом теле, имеющемся только у млекопитающих, располагаются волокна, соединяющие новые, более молодые, отделы мозга, корковые центры правого и левого полушарий. В белом веществе полушарий волокна мозолистого тела расходятся веерообразно, образуя лучистость мозолистого тела (radiatio corporis callosi).

Комиссуральные волокна, идущие в колене и клюве мозолистого тела, соединяют друг с другом участки лобных долей правого и левого полушарий большого мозга. Загибаясь кпереди, пучки этих волокон как бы охватывают с двух сторон переднюю часть продольной щели большого мозга и образуют лобные щипцы (forceps frontalis). В стволе мозолистого тела проходят нервные волокна, соединяющие кору центральных извилин, теменных и височных долей двух полушарий большого мозга. Валик мозолистого тела состоит из комиссуральных волокон, которые соединяют кору затылочных и задние отделы теменных долей правого и левого полушарий большого мозга. Изгибаясь кзади, пучки этих волокон охватывают задние отделы продольной щели большого мозга и образуют затылочные щипцы (forceps occipitalis).

Комиссуральные волокна проходят в составе передней спайки мозга (commissura rostralis, s. anterior) и спайки свода (commissura fornicis). Большая часть комиссуральных волокон, входящих в состав передней спайки, - это пучки, соединяющие друг с другом переднемедиальные участки коры височных долей обоих полушарий в дополнение к волокнам мозолистого тела. В составе передней спайки находятся также слабовыраженные у человека пучки комиссуральных волокон, направляющиеся из области обонятельного треугольника одной стороны мозга в такую же область другой стороны. В спайке свода проходят комиссуральные волокна, которые соединяют участки коры правой и левой височных долей полушарий большого мозга, правого и левого гиппокампов.

Проекционные нервные волокна (neurofibrae proectiones) соединяют нижележащие отделы мозга (спинной мозг) с головным мозгом, а также ядра мозгового ствола с базальными ядрами (полосатым телом) и корой и, наоборот, кору головного мозга, базальные ядра с ядрами мозгового ствола и со спинным мозгом. При помощи проекционных волокон, достигающих коры большого мозга, картины внешнего мира как бы проецируются на кору как на экран, где происходят высший анализ поступивших сюда импульсов, сознательная их оценка. В группе проекционных путей выделяют восходящие и нисходящие системы волокон.

Восходящие проекционные пути (афферентные, чувствительные) несут в головной мозг, к его подкорковым и высшим центрам (к коре), импульсы, возникшие в результате воздействия на организм факторов внешней среды, в том числе и от органов чувств, а также импульсы от органов движения, внутренних органов, сосудов. По характеру проводимых импульсов восходящие проекционные пути подразделяются на три группы.

  1. Экстероцептивные пути (от лат. exter. externus - наружный, внешний) несут импульсы (болевые, температурные, осязания и давления), возникшие в результате воздействия внешней среды на кожные покровы, а также импульсы от высших органов чувств (органов зрения, слуха, вкуса, обоняния).
  2. Проприоцептивные пути (от лат. proprius - собственный) проводят импульсы от органов движения (от мышц, сухожилий, суставных капсул, связок), несут информацию о положении частей тела, о размахе движений.
  3. Интероцептивные пути (от лат. interior - внутренний) проводят импульсы от внутренних органов, сосудов, где хемо-, баро- и механорецепторы воспринимают состояние внутренней среды организма, интенсивность обмена веществ, химизм крови, тканевой жидкости, лимфы, давление в сосудах

Экстероцептивные проводящие пути. Проводящий путь болевой и температурной чувствительности - латеральный спинно-таламический путь (tractus spinothalamicus lateralis) состоит из трех нейронов. Чувствительным проводящим путям принято давать названия с учетом топографии - места начала и конца второго нейрона. Например, у спинно-таламического пути второй нейрон простирается от спинного мозга, где в заднем роге лежит тело клетки, до таламуса, где аксон этого нейрона образует синапс с клеткой третьего нейрона. Рецепторы первого (чувствительного) нейрона, воспринимающие чувство боли, температуру, располагаются в коже, слизистых оболочках, а нейрит третьего нейрона заканчивается в коре постцентральной извилины, где находится корковый конец анализатора общей чувствительности. Тело первой чувствительной клетки лежит в спинномозговом узле, а ее центральный отросток в составе заднего корешка направляется в задний рог спинного мозга и заканчивается синапсами на клетках второго нейрона. Аксон второго нейрона, тело которого лежит в заднем роге, направляется на противоположную сторону спинного мозга через его переднюю серую спайку и входит в боковой канатик, где включается в состав латерального спинно-таламического пути. Из спинного мозга пучок поднимается в продолговатый мозг и располагается позади ядра оливы, а в покрышке моста и среднего мозга лежит у наружного края медиальной петли. Заканчивается второй нейрон латерального спинно-таламического пути синапсами на клетках дорсального латерального ядра таламуса. Здесь расположены тела третьего нейрона, отростки клеток которого проходят через заднюю ножку внутренней капсулы и в составе веерообразно расходящихся пучков волокон, образующих лучистый венец (corona radiata). Эти волокна достигают коры полушария большого мозга, его постцентральной извилины. Здесь они заканчиваются синапсами с клетками четвертого слоя (внутренняя зернистая пластинка). Волокна третьего нейрона чувствительного (восходящего) проводящего пути, соединяющего таламус с корой, образуют таламокорковые пучки (fasciculi thalamocorticalis) - таламотеменные волокна (fibrae thalamoparietales). Латеральный спинно-таламический путь является полностью перекрещенным проводящим путем (все волокна второго нейрона переходят на противоположную сторону), поэтому при повреждении одной половины спинного мозга полностью исчезают болевая и температурная чувствительность на противоположной стороне от повреждения.

Проводящий путь осязания и давления, передний спинно-таламический путь (tractus spinothalamicus ventralis, s. anterior) несет импульсы от кожи, где лежат рецепторы, воспринимающие чувство давления и осязания. Импульсы идут к коре большого мозга, в постцентральную извилину - место расположения коркового конца анализатора общей чувствительности. Тела клеток первого нейрона лежат в спинномозговом узле, а их центральные отростки в составе заднего корешка спинномозговых нервов направляются в задний рог спинного мозга, где заканчиваются синапсами на клетках второго нейрона. Аксоны второго нейрона переходят на противоположную сторону спинного мозга (через переднюю серую спайку), входят в передний канатик и в его составе направляются вверх, к головному мозгу. На своем пути в продолговатом мозге аксоны этого пути присоединяются с латеральной стороны к волокнам медиальной петли и заканчиваются в таламусе, в его дорсальном латеральном ядре, синапсами на клетках третьего нейрона. Волокна третьего нейрона проходят через внутреннюю капсулу (заднюю ножку) и в составе лучистого венца достигают IV слоя коры постцентральной извилины.

Необходимо отметить, что не все волокна, несущие импульсы осязания и давления, переходят на противоположную сторону в спинном мозге. Часть волокон проводящего пути осязания и давления идет в составе заднего канатика спинного мозга (своей стороны) вместе с аксонами проводящего пути проприоцептивной чувствительности коркового направления. В связи с этим при поражении одной половины спинного мозга кожное чувство осязания и давления на противоположной стороне не исчезает полностью, как болевая чувствительность, а только снижается. Этот переход на противоположную сторону частично осуществляется в продолговатом мозге.

Проприоцептивные проводящие пути. Проводящий путь проприоцептивной чувствительности коркового направления (tractus bulbothalamicus - BNA) называется так, поскольку проводит импульсы мышечно-суставного чувства к коре большого мозга, в постцентральную извилину. Чувствительные окончания (рецепторы) первого нейрона располагаются в мышцах, сухожилиях, суставных капсулах, связках. Сигналы о тонусе мышц, натяжении сухожилий, о состоянии опорно-двигательного аппарата в целом (импульсы проприоцептивной чувствительности) позволяют человеку оценить положение частей тела (головы, туловища, конечностей) в пространстве, а также во время движения и проводить целенаправленные осознанные движения и их коррекцию. Тела первых нейронов лежат в спинномозговом узле. Центральные отростки этих клеток в составе заднего корешка направляются в задний канатик, минуя задний рог, а затем уходят вверх в продолговатый мозг к тонкому и клиновидному ядрам. Аксоны, несущие проприоцептивные импульсы, входят в задний канатик начиная с нижних сегментов спинного мозга. Каждый следующий пучок аксонов прилежит с латеральной стороны к уже имеющимся пучкам. Таким образом, наружные отделы заднего канатика (клиновидный пучок, пучок Бурдаха) заняты аксонами клеток, осуществляющих проприоцептивную иннервацию в верхнегрудных, шейных отделах тела и верхних конечностей. Аксоны, занимающие внутреннюю часть заднего канатика (тонкий пучок, пучок Голля), проводят проприоцептивные импульсы от нижних конечностей и нижней половины туловища. Центральные отростки первого нейрона заканчиваются синапсами на своей стороне, на клетках второго нейрона, тела которых лежат в тонком и клиновидных ядрах продолговатого мозга. Аксоны клеток второго нейрона выходят из этих ядер, дугообразно изгибаются вперед и медиально на уровне нижнего угла ромбовидной ямки и в межоливном слое переходят на противоположную сторону, образуя перекрест медиальных петель (decussatio lemniscorum medialis). Пучок волокон, обращенных в медиальном направлении и переходящих на другую сторону, получил название внутренних дугообразных волокон (fibrae arcuatae internae), которые являются начальным отделом медиальной петли (lemniscus medialis). Волокна меди альной петли в мосту располагаются в задней его части (в покрышке), почти на границе с передней частью (между пучками волокон трапециевидного тела). В покрышке среднего мозга пучок волокон медиальной петли занимает место дорсолатеральнее красного ядра, а заканчивается в дорсальном латеральном ядре таламуса синапсами на клетках третьего нейрона. Аксоны клеток третьего нейрона через заднюю ножку внутренней капсулы и в составе лучистого венца достигают постцентральной извилины.

Часть волокон второго нейрона по выходе из тонкого и клиновидного ядер изгибается кнаружи и разделяется на два пучка. Один пучок - задние наружные дугообразные волокна (fibrae arcuatae externae dorsales, s. posteriores), направляются в нижнюю мозжечковую ножку своей стороны и заканчиваются в коре червя мозжечка. Волокна второго пучка - передние наружные дугообразные волокна (fibrae arcuatae externae ventrales, s. anteriores) уходят вперед, переходят на противоположную сторону, огибают с латеральной стороны оливное ядро и также через нижнюю мозжечковую ножку направляются к коре червя мозжечка. Передние и задние наружные дугообразные волокна несут проприоцептивные импульсы к мозжечку.

Проприоцептивный путь коркового направления также перекрещенный. Аксоны второго нейрона переходят на противоположную сторону не в спинном мозге, а в продолговатом. При повреждении спинного мозга на стороне возникновения проприоцептивных импульсов (при травме мозгового ствола - на противоположной стороне) теряется представление о состоянии опорно-двигательного аппарата, положении частей тела в пространстве, нарушается координация движений.

Наряду с проприоцептивным проводящим путем, несущим импульсы к коре большого мозга, следует назвать проприоцептивные передний и задний спинно-мозжечковые пути. По этим проводящим путям мозжечок получает информацию от расположенных ниже чувствительных центров (спинного мозга) о состоянии опорно-двигательного аппарата, участвует в рефлекторной координации движений, обеспечивающих равновесие тела без участия высших отделов головного мозга (коры полушарий большого мозга).

Задний спинно-мозжечковый путь (tractus spinocerebellaris dorsalis, s. posterior; пучок Флексига) передает проприоцептивные импульсы от мышц, сухожилий, суставов в мозжечок. Тела клеток первого (чувствительного) нейрона находятся в спинномозговом узле, а центральные отростки их в составе заднего корешка направляются в задний рог спинного мозга и заканчиваются синапсами на клетках грудного ядра (ядра Кларка), лежащего в медиальной части основания заднего рога. Клетки грудного ядра являются вторым нейроном заднего спинно-мозжечкового пути. Аксоны этих клеток выходят в боковой канатик своей стороны, в его заднюю часть, поднимаются вверх и через нижнюю мозжечковую ножку входят в мозжечок, к клеткам коры червя. Здесь спинно-мозжечковый путь заканчивается.

Можно проследить системы волокон, по которым импульс из коры червя достигает красного ядра, полушария мозжечка и даже вышележащих отделов мозга - коры полушарий большого мозга. Из коры червя через пробковидное и шаровидное ядра импульс через верхнюю мозжечковую ножку направляется к красному ядру противоположной стороны (мозжечково-покрышечный путь). Кора червя связана ассоциативными волокнами с корой полушария мозжечка, откуда импульсы поступают в зубчатое ядро мозжечка.

С развитием высших центров чувствительности и произвольных движений в коре полушарий большого мозга возникли также связи мозжечка с корой, осуществляющиеся через таламус. Таким образом, из зубчатого ядра аксоны его клеток через верхнюю мозжечковую ножку выходят в покрышку моста, переходят на противоположную сторону и направляются к та-ламусу. Переключившись в таламусе на следующий нейрон, импульс следует в кору большого мозга, в постцентральную извилину.

Передний спинно-мозжечковый путь (tractus spinocerebellaris ventralis, s. anterior; пучок Говерса) имеет более сложное строение, чем задний, поскольку проходит в боковом канатике противоположной стороны, возвращаясь в мозжечок на свою сторону. Тело клетки первого нейрона располагается в спинномозговом узле. Его периферический отросток имеет окончания (рецепторы) в мышцах, сухожилиях, суставных капсулах. Центральный отросток клетки первого нейрона в составе заднего корешка входит в спинной мозг и заканчивается синапсами на клетках, примыкающих с латеральной стороны к грудному ядру. Аксоны клеток этого второго нейрона проходят через переднюю серую спайку в боковой канатик противоположной стороны, в его переднюю часть, и поднимаются вверх до уровня перешейка ромбовидного мозга. В этом месте волокна переднего спинно-мозжечкового пути возвращаются на свою сторону и через верхнюю мозжечковую ножку вступают в кору червя своей стороны, в его передневерхние отделы. Таким образом, передний спинно-мозжечковый путь, проделав сложный, дважды перекрещенный путь, возвращается на ту же сторону, на которой возникли проприоцептивные импульсы. Проприоцептивные импульсы, поступившие в кору червя по переднему спинно-мозжечковому проприоцептивному пути, также передаются в красное ядро и через зубчатое ядро в кору большого мозга (в постцентральную извилину).

Схемы строения проводящих путей зрительного, слухового анализаторов, вкуса и обоняния рассматриваются в соответствующих разделах анатомии (см. «Органы чувств»).

Нисходящие проекционные пути (эффекторные, эфферентные) проводят импульсы от коры, подкорковых центров к нижележащим отделам, к ядрам мозгового ствола и двигательным ядрам передних рогов спинного мозга. Эти пути можно подразделить на две группы:

  1. главный двигательный, или пирамидный путь (корково-ядерный и корково-спинномозговые пути), несет импульсы произвольных движений из коры головного мозга к скелетным мышцам головы, шеи, туловища, конечностей через соответствующие двигательные ядра головного и спинного мозга;
  2. экстрапирамидные двигательные пути (tractus rubrospinalis, tractus vestibulospinalis и др.) передают импульсы от подкорковых центров к двигательным ядрам черепных и спинномозговых нервов, а затем к мышцам.

К пирамидному пути (tractus pyramidalis) относится система волокон, по которым двигательные импульсы из коры большого мозга, из предцентральной извилины, от гигантопирамидальных нейронов (клетки Беца) направляются к двигательным ядрам черепных нервов и передним рогам спинного мозга, а от них - к скелетным мышцам. Учитывая направление хода волокон, а также расположение пучков в стволе головного мозга и канатиках спинного мозга, пирамидный путь подразделяют на три части:

  1. корково-ядерный - к ядрам черепных нервов;
  2. латеральный корково-спинномозговой - к ядрам передних рогов спинного мозга;
  3. передний корково-спинномозговой - также к передним рогам спинного мозга.

Корково-ядерный путь (tractus corticonuclearis) представляет собой пучок отростков гигантопирамидальных нейронов, которые из коры нижней трети предцентральной извилины спускаются к внутренней капсуле и проходят через ее колено. Далее волокна корково-ядерного пути идут в основании ножки мозга, образуя медиальную часть пирамидных путей. Корково-ядерный, а также корково-спинномозговые пути занимают средние 3/5 основания ножки мозга. Начиная со среднего мозга и далее, в мосту и продолговатом мозге волокна корково-ядерного пути переходят на противоположную сторону к двигательным ядрам черепных нервов: III и IV - в среднем мозге; V, VI, VII - в мосту; IX, X, XI, XII - в продолговатом мозге. В этих ядрах корково-ядерный путь заканчивается. Составляющие его волокна образуют синапсы с двигательными клетками этих ядер. Отростки упомянутых двигательных клеток выходят из мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам головы и шеи и их иннервируют.

Латеральный и передний корково-спинномозговые пути (tractus corticospinales lateralis et ventralis, s.anterior) также начинаются от гигантопирамидальных нейронов предцентральной извилины, ее верхних 2/3. Аксоны этих клеток направляются к внутренней капсуле, проходят через переднюю часть ее задней ножки (сразу позади волокон корково-ядерного пути), спускаются в основание ножки мозга, где занимают место латеральнее корково-ядерного пути. Далее корково-спинномозговые волокна спускаются в переднюю часть (основание) моста, пронизывают идущие в поперечном направлении пучки волокон моста и выходят в продолговатый мозг, где на передней (нижней) его поверхности образуют выступающие вперед валики - пирамиды. В нижней части продолговатого мозга часть волокон переходит на противоположную сторону и продолжается в боковой канатик спинного мозга, постепенно заканчиваясь в передних рогах спинного мозга синапсами на двигательных клетках его ядер. Эта часть пирамидных путей, участвующая в образовании перекреста пирамид (моторный перекрест), получила название латерального корково-спинномозгового пути. Те волокна корково-спинномозгового пути, которые не участвуют в образовании перекреста пирамид и не переходят на противоположную сторону, продолжают свой путь вниз в составе переднего канатика спинного мозга. Эти волокна составляют передний корково-спинномозговой путь. Затем эти волокна также переходят на противоположную сторону, но через белую спайку спинного мозга и заканчиваются на двигательных клетках переднего рога противоположной стороны спинного мозга. Располагающийся в переднем канатике передний корково-спинномозговой путь более молодой в эволюционном плане, чем латеральный. Его волокна спускаются преимущественно до уровня шейных и грудных сегментов спинного мозга.

Следует отметить, что все пирамидные пути являются перекрещенными, т.е. их волокна на пути к следующему нейрону рано или поздно переходят на противоположную сторону. Поэтому повреждение волокон пирамидных путей при одностороннем поражении спинного (или головного) мозга ведет к параличу мышц на противоположной стороне, получающих иннервацию из сегментов, лежащих ниже места повреждения.

Вторыми нейронами нисходящего произвольного двигательного пути (корково-спинномозгового) являются клетки передних рогов спинного мозга, длинные отростки которых выходят из спинного мозга в составе передних корешков и направляются в составе спинномозговых нервов для иннервации скелетных мышц.

Экстрапирамидные проводящие пути, объединенные в одну группу, в отличие от более новых пирамидных путей являются эволюционно более старыми, имеющими обширные связи в мозговом стволе и с корой большого мозга, взявшей на себя функции контроля и управления экстрапирамидной системой. Кора большого мозга, получающая импульсы как по прямым (коркового направления) восходящим чувствительным путям, так и из подкорковых центров, управляет двигательными функциями организма через экстрапирамидные и пирамидные пути. Кора большого мозга оказывает влияние на двигательные функции спинного мозга через систему мозжечок - красные ядра, через ретикулярную формацию, имеющую связи с таламусом и полосатым телом, через вестибулярные ядра. Таким образом, в число центров экстрапирамидной системы входят красные ядра, одной из функций которых является поддержание мышечного тонуса, необходимого для удерживания тела в состоянии равновесия без усилия воли. Красные ядра, которые относятся также к ретикулярной формации, получают импульсы из коры большого мозга, мозжечка (от мозжечковых проприоцептивных путей) и сами имеют связи с двигательными ядрами передних рогов спинного мозга.

Красноядерно-спинномозговой путь (trdctus rubrospinalis) входит в состав рефлекторной дуги, приносящим звеном которой являются спинно-мозжечковые проприоцептивные проводящие пути. Этот путь берет начало от красного ядра (пучок Монакова), переходит на противоположную сторону (перекрест Фореля) и спускается в боковом канатике спинного мозга, заканчиваясь на двигательных клетках спинного мозга. Волокна этого пути проходят в задней части (покрышка) моста и боковых отделах продолговатого мозга.

Важным звеном в координации двигательных функций тела человека является преддверно-спинномозговой путь (tractus vestibulospinalis). Он связывает ядра вестибулярного аппарата с передними рогами спинного мозга и обеспечивает установочные реакции тела при нарушении равновесия. В образовании преддверно-спинномозгового пути принимают участие аксоны клеток латерального вестибулярного ядра (ядро Дейтерса), а также нижнего вестибулярного ядра (нисходящего корешка) преддверно-улиткового нерва. Эти волокна спускаются в латеральной части переднего канатика спинного мозга (на границе с боковым) и заканчиваются на двигательных клетках передних рогов спинного мозга. Ядра, образующие преддверно-спинномозговой путь, находятся в непосредственной связи с мозжечком, а также с задним продольным пучком (fasciculus longitudinalis dorsalis, s. posterior), который в свою очередь связан с ядрами глазодвигательных нервов. Наличие связей с ядрами глазодвигательных нервов обеспечивает сохранение положения глазных яблок (направление зрительной оси) при поворотах головы и шеи. В образовании заднего продольного пучка и тех волокон, которые достигают передних рогов спинного мозга (ретикулярно-спинномозговой путь, tractus reticulospinalis), принимают участие клеточные скопления ретикулярной формации стволовой части мозга, главным образом промежуточное ядро (nucleus intersticialis, ядро Кахаля), ядро эпиталамической (задней) спайки, ядро Даркшевича, к которым приходят волокна из базальных ядер полушарий большого мозга.

Управление функциями мозжечка, участвующего в координации движений головы, туловища и конечностей и связанного в свою очередь с красными ядрами и вестибулярным аппаратом, осуществляется из коры большого мозга через мост по корково-мостомозжечковому пути (tractus corticopontocerebellaris). Этот проводящий путь состоит из двух нейронов. Тела клеток первого нейрона лежат в коре лобной, височной, теменной и затылочной долей. Их отростки - корковом остовые волокна (fibrae corticopontinae) направляются к внутренней капсуле и проходят через нее. Волокна из лобной доли, которые можно назвать лобно-мостовыми волокнами (fibrae frontopontinae), проходят через переднюю ножку внутренней капсулы. Нервные волокна из височной, теменной и затылочной долей идут через заднюю ножку внутренней капсулы. Далее волокна корково-мостового пути идут через основание ножки мозга. От лобной доли волокна проходят через самую медиальную часть основания ножки мозга, кнутри от корково-ядерных волокон. От теменной и других долей полушарий большого мозга идут через самую латеральную часть, кнаружи от корково-спинномозговых путей. В передней части (в основании) моста волокна корково-мостового пути заканчиваются синапсами на клетках ядра моста этой же стороны мозга. Клетки ядер моста с их отростками составляют второй нейрон корково-мозжечкового пути. Аксоны клеток ядер моста складываются в пучки - поперечные волокна моста (fibrae pontis transversae), которые переходят на противоположную сторону, пересекают при этом в поперечном направлении нисходящие пучки волокон пирамидных путей и через среднюю мозжечковую ножку направляются в полушарие мозжечка противоположной стороны.

Таким образом, проводящие пути головного и спинного мозга устанавливают связи между афферентными и эфферентными (эффекторными) центрами, участвуют в образовании сложных рефлекторных дуг в теле человека. Одни проводящие пути (системы волокон) начинаются или заканчиваются в эволюционно более старых, лежащих в мозговом стволе ядрах, обеспечивающих функции, обладающие определенным автоматизмом. Эти функции (например, тонус мышц, автоматические рефлекторные движения) осуществляются без участия сознания, хотя и под контролем коры большого мозга. Другие проводящие пути передают импульсы в кору большого мозга, в высшие отделы ЦНС, или из коры к подкорковым центрамбазальным ядрам, ядрам мозгового ствола и спинного мозга). Проводящие пути функционально объединяют организм в одно целое, обеспечивают согласованность его действий.