Производственный шум характеристики. Большая энциклопедия нефти и газа

Исключительно широкое распространение производственного оборудования, характеризующегося различной частотой механических колебаний, придает важное значение исследованию колебаний, воспринимаемых слуховым анализатором. В виде звука воспринимаются колебания с частотой 16-18 000 Гц. Шум представляет собой беспорядочное сочетание звуков различной частоты и силы.

При непрерывном с бесконечно малыми интервалами расположении звуков, составляющих шум, спектр шума носит название непрерывного, или сплошного, в отличие от дискретного, или линейного, характеризующегося значительными интервалами.

В зависимости от спектрального состава различают три класса производственного шума.

Класс 1. Низкочастотные шумы (шум тихоходных агрегатов неударного действия, шум, проникающий сквозь звукоизолирующие преграды, стены, перекрытия, кожухи). Наибольшие уровни частоты в спектре шума расположены ниже 400 Гц, за которой следует понижение (не менее чем на 5 дБ на каждую последующую октаву).

Класс 2. Среднечастотные шумы (шумы большинства машин, станков и агрегатов неударного действия). Наибольшие уровни частоты в спектре шума расположены ниже 800 Гц, за которыми также следует понижение не менее чем на 5 дБ на каждую последующую октаву.

Класс 3. Высокочастотные шумы (звенящие, шипящие, свистящие, характерные для агрегатов ударного действия, потоков воздуха и газа, агрегатов, действующих с большими, скоростями). Наибольший уровень частоты в спектре шума расположен выше 800 Гц.

При резком преобладании какого-либо тона в спектре шума последний носит характер тонального. Например, при работе машины основной тон может быть различным в зависимости от числа оборотов основных ее элементов.

Спектральный анализ шума, производимый с помощью анализаторов шума или анализаторов звуковых частот, позволяет наметить меры снижения шума.

Интенсивность или сила звука оценивается количеством энергии, переносимой в единицу времени через единицу площади, перпендикулярной к направлению движения звуковой волны. Измеряется интенсивность звука в ваттах на квадратный сантиметр. Минимальная интенсивность звука, которую слуховой орган в состоянии воспринять, называется порогом слышимости. За верхнюю границу слуховых ощущений принимают порог осязания, или интенсивность звука, при которой он вызывает болевое ощущение. Интенсивность звука можно оценить по звуковому давлению, в барах или ньютонах. Бар- приблизительно одна миллионная часть атмосферного давления, ньютон равен 0,102 кг. Речь обычной громкости создает звуковое давление в 1 бар.

В физике для оценки уровня силы звука (шума) принята логарифмическая шкала уровней силы звука. В этой шкале белы представляют собой не абсолютные, а относительные единицы, выражающие превышение силы звука по отношению к исходной величине. За начало отсчета (нулевой уровень шкалы) условно принят порог слышимости стандартного тона 1000 Гц, интенсивность которого в единицах звуковой энергии равна 10 -12 вт/м 2 /сек. Наибольший по силе звук, еще воспринимаемый органом слуха, выше порога слышимости в 10-14 раз. По уровню силы звук этот выше порога слышимости на 14 единиц. Единица эта - бел; 1/10 бела - децибел (дБ). Так, при уровне силы шума в 60 дБ (или 6 бел) интенсивность шума выше порога слышимости тона 1000 Гц в 10 6 или в 1 000 000 раз. Наиболее сильный шум, который еще воспринимается органом слуха как звук, оценивается по этой шкале в 14 бел, или 140 дБ. Увеличению интенсивности звука вдвое в единицах звуковой энергии соответствует по шкале децибел увеличение на логарифм 2, т. е. на 0,3 бел, или 3 дБ.

Для физиологической оценки уровня громкости шума (звука) можно пользоваться шкалой, в которой громкость всех звуков сравнивается на слух с громкостью тона 1000 Гц, а уровень громкости его принят равным уровню силы в децибелах. Физическая оценка уровня силы шума в децибелах и физиологическая оценка его разнятся тем больше, чем слабее звук и чем ниже его частота. При уровнях силы шума 80 дБ и более физическая и физиологическая количественная характеристика почти не разнятся.

В процессе восприятия звуков (шума) слуховой анализатор в зависимости от спектрального состава и силы шума адаптируется к нему: к сильным звуковым раздражителям чувствительность органа слуха несколько понижается и восстанавливается после прекращения действия раздражителя.

Если после воздействия шума чувствительность к нему понижается (порог восприятия повышается) не более чем на 10-15 дБ, а восстановление ее наступает не более чем в течение 2-3 минут, это свидетельствует об адаптации к шуму. Изменение же порогов более значительное, и замедленное восстановление чувствительности является признаком утомления слуха. Чем выше звук, тем больше его утомляющее действие. Звуки с частотой 2000-4000 Гц оказывают утомляющее действие уже при 80 дБ, звуки до 1024 Гц при этой интенсивности вызывают менее выраженное утомление. При интенсивном шуме обычно возникает снижение слуховой чувствительности, вследствие утомления слуха и ослабления восприятия высоких частот независимо от спектра действовавшего шума.

Интенсивным шумом в производственных условиях нередко вызывается стойкое понижение чувствительности к различным тонам и шепотной речи (профессиональная тугоухость и глухота).

Клинические обследования рабочих, подвергающихся на производстве систематическому воздействию шума (ткачи, котельщики, испытатели моторов, клепальщики, кузнецы и молотобойцы, гвоздильщики и др.), выявили среди них значительный, увеличивающийся со стажем, процент лиц с ослабленным слухом, заболеваниями внутреннего и среднего уха. Чрезмерно выраженное понижение слуха наблюдалось и при обследовании непосредственно после работы, очевидно в связи со слуховым утомлением, наступавшем в течение смены. Аудиометрически установлено раннее возникновение начальных нарушений слуха, причем начальное понижение слуховой чувствительности (повышение слуховых порогов) к отдельным тонам независимо от частоты шума обнаруживается для тона 4096 Гц и лишь затем устанавливается стойкое понижение восприятия тонов более высоких и низких частот.

В развитии профессиональной глухоты, несомненно, решающую роль играет звуковоспринимающий (кохлеарный) аппарат и, вероятно, корковая область слухового анализатора. При морфологическом исследовании внутреннего уха лиц, страдавших при жизни тугоухостью, обнаружены атрофические и некробиотические изменения в кортиевом органе и основном завитке спирального ганглия. При длительной работе в условиях интенсивного шума, особенно высокочастотного, наступает постепенное ослабление слышимости сначала высоких, а затем и других тонов, которое может привести к полной глухоте.

Наряду с изменениями в слуховом аппарате установлено влияние шума на центральную нервную систему, характеризующееся симптомами перераздражения ее: замедлением нервных реакций, понижением внимания, работоспособности, производительности труда.

Под влиянием шума изменяются ритм дыхания, частота пульса, уровень кровяного давления и другие вегетативные функции. Иногда под влиянием шума наблюдалось также изменение двигательной и секреторной функций желудка, объема внутренних органов, газообмена.

Множественное нарушение функций под влиянием шума позволило Е. Е. Андреевой-Галаниной объединить весь комплекс этих нарушений в понятие «шумовая болезнь».

Таким образом, действие шума зависит от трех основных условий:
1) длительности воздействия шума; профессиональная тугоухость и профессиональная глухота развиваются обычно постепенно, в течение ряда лет;
2) интенсивности шума: чем интенсивнее шум, тем быстрее развиваются утомление и соответствующие патологические изменения;
3) частотной характеристики (спектра шума); чем больше преобладают в шуме высокие частоты, тем он опаснее в смысле развития тугоухости, тем сильнее его раздражающее действие, тем скорее возникает утомление.

Учитывая, что шум может влиять на различные функции организма (нарушает сон, мешает выполнять напряженную умственную работу), для разных помещений устанавливаются различные допустимые уровни шума.

Шум, не превышающий 30-35 дБ, не ощущается как утомительный или заметный. Такой уровень шума является допустимым для читальных залов, больничных палат, жилых комнат ночью. Для конструкторских бюро, конторских помещений допускается уровень шума 50-60 дБ.

Для производственных помещений, в которых снижение уровня шума связано с большими техническими трудностями, приходится ориентироваться не только на утомляющее действие шума, но и на предотвращение развития профессиональной патологии.

Большинство исследователей склоняется к тому, что шум в пределах 80-85 дБ, а по некоторым данным - до 90 дБ, не вызывает при длительном воздействии профессиональной тугоухости.

В Советском Союзе установлены предельно допустимые уровни шума (табл. 30), приведенные в «Гигиенических нормах допустимых уровней звукового давления и уровней звука на рабочих местах» № 1004-73. В зависимости от длительности действия и характера шума предусмотрены поправки к октавным уровням звуковых давлений (табл. 31).

Таблица 30. Допустимые уроки звукового давления и уровни звука на постоянных рабочих местах
Наименование Среднегеометрические частоты октавных полос, Гц Уровни звука, дБ А
63 125 250 500 1000 2000 4000 8000
уровни звукового давления, дБ
1. При шуме, проникающем извне помещений, находящихся на территории предприятий:
а) конструкторские бюро, комнаты расчетчиков и программистов счетно-электронных машин, помещения лабораторий для теоретических работ и обработки экспериментальных данных, помещения приема больных здравпунктов
71 61 54 49 45 42 40 38 50
б) помещения управлений (рабочие комнаты) 79 70 63 58 55 52 50 49 60
в) кабины наблюдения и дистанционного управления 94 87 82 78 75 73 71 70 60
г) то же с речевой связью по телефону 83 74 68 63 75 57 55 54 65
2. При шуме, возникающем внутри помещений и проникающем в помещения, находящиеся на территории предприятий:
а) помещения и участки точной сборки, машинописные бюро
83 74 68 63 75 57 55 54 65
б) помещения лабораторий, помещения для размещения «шумных» агрегатов счетно-вычислительных машин (табуляторов, перфораторов, магнитных барабанов и т. п.) 94 87 82 78 75 73 71 70 80
3. Постоянные рабочие места в производственных помещениях и на территории предприятий 99 92 86 83 80 78 76 74 85
Примечание . В зависимости от характера шума и его воздействия величины октавных уровней звуковых давлений, приведенных в табл. 30, подлежат уточнению согласно табл. 31.

Шум - это совокупность звуков разной интенсивности и частоты, беспорядочно изменяющихся во времени, возникающих в производственных условиях и вызывающих у работающих неприятные ощущения и объективные изменения органов и систем.

Для гигиенической оценки шумов практический интерес представляет звуковой диапазон частот от 45 до 11 000 Гц.

При акустических измерениях определяют уровни звукового давления [единица измерения - паскаль (Па)] в пределах частотных полос, равных октаве, полуоктаве или трети октавы. За октаву принимается диапазон частот, в котором верхняя граница частоты вдвое больше нижней (например, 40-80, 80-160 Гц и т.д.).

Для обозначения октавы обычно указывается не диапазон частот, а так называемые среднегеометрические частоты. Так, для октавы 40-80 Гц среднегеометрическая частота - 62 Гц, для октавы 80- 160 Гц - 125 Гц и т.д.

Для характеристики интенсивности звуков или шума принята измерительная система, учитывающая приближенную логарифмическую зависимость между раздражением и слуховым восприятием - шкала бел (или децибел). По этой шкале каждая последующая ступень интенсивности звука больше предыдущей в 10 раз. Например, если интенсивность одного звука выше уровня другого в 10, 100, 1000 раз, то по логарифмической шкале она увеличивается соответственно на 1, 2, 3 единицы. Логарифмическая единица, отражающая десятикратную степень увеличения интенсивности одного звука над уровнем другого, называется в акустике белом (Б).

При построении этой шкалы за исходную цифру 0 Б принята пороговая для слуха величина звукового давления - 2?10-5 Па. При возрастании ее в 10 раз звук воспринимается как вдвое более громкий, и его звуковое давление составляет 1 Б. При увеличении интенсивности в 100 раз в сравнении с пороговой звук оказывается вдвое громче предыдущего и звуковое давление будет равно 2 Б. Иными словами, при измерении звукового давления пользуются не абсолют-

ными величинами звукового давления, а относительными, выражающими отношение величины и давления данного звука к величинам давления, являющимся пороговыми для слуха. Пользование этой шкалой очень удобно: весь диапазон человеческого слуха укладывается в 13-14 Б.

В гигиенических исследованиях обычно используют децибел - единицу, в 10 раз меньшую бела, а шкалу называют шкалой децибел

Характеристика шума в децибелах не дает полного представления о его громкости, так как звуки, имеющие одну и ту же интенсивность, но разную частоту, на слух воспринимаются как неодинаково гром- кие: имеющие низкую или очень большую частоту (вблизи верхней границы воспринимаемых частот) ощущаются как более тихие в сравнении со звуками, находящимися в средней зоне.

Классификация шумов

По характеру спектра выделяют следующие шумы:

Широкополосные, с непрерывным спектром шириной более одной октавы;

Тональные, в спектре которых имеются выраженные тоны. Тональный характер шума устанавливают путем измерения в треть- октавных полосах частот по превышению уровня в одной полосе по сравнению с соседними не менее чем на 10 дБ.

По временным характеристикам различают шумы:

Постоянные, уровень звуков которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА;

Непостоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не менее чем на 5 дБА.

Непостоянные шумы можно подразделить на следующие виды:

Колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

Прерывистые, уровень звука которых ступенчато изменяется (на 5 и более дБА), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 и более с;

Импульсные, состоящие из одного или нескольких звуковых сигналов, каждый из которых имеет длительность менее 1 с; при этом уровни звука, измеренные соответственно на временных характеристиках «импульс» и «медленно» шумомера, различаются не менее чем на 7 дБ.

Можно также классифицировать шумы по частотному составу:

Низкочастотные с преобладанием максимальных уровней звукового давления (в сравнении с ПДУ) в октавных полосах до 400 Гц;

Среднечастотные - от 400 до 1000 Гц;

Высокочастотные - свыше 1000 Гц. По происхождению:

Механические (ударные шумы, шумы трения и др.);

Аэро- и гидродинамические (работа вентиляторов, форсунок и

Регламентация параметров шума на рабочих местах. Характеристикой постоянного шума являются уровни звуковых давлений (в дБ) в октавных полосах со среднегеометрическими частотами 31,5, 63, 125, 250, 500, 1000, 2000, 4000, 8000; в ряде случаев для ориентировочной оценки шума допускается измерение уровня в дБА.

Характеристикой непостоянного шума является интегральный параметр, эквивалентный (по энергии) уровень звука в дБА.

Измерение шума на рабочих местах проводится согласно методическим указаниям по проведению измерений и гигиенической оценке шумов на рабочих местах (МУ 1844-78) и ГОСТу «Методы измерения шума на рабочих местах» (ГОСТ 12.1.050-86).

Уровни шума измеряют шумомерами 1-го или 2-го класса точности по ГОСТу 17187-81 «Шумомеры. Общие технические требования и методы испытаний» (табл. 5.1).

Таблица 5.1. Основные характеристики некоторых приборов для

измерения физических параметров

Рис. 5.1. Шумомер интегрирующий - виброметр ШИ-01В

Универсальный прибор первого класса точности для измерения параметров шума, инфразвука и вибрации.

Измерение параметров шума дополнено режимами измерения параметров вибрации:

уровни виброускорения на частотной характеристике ЛИН с временами усреднения 1; 5; 10 с и эквивалентные уровни виброускорения;

для локальной вибрации - уровни виброускорения с временами усреднения 1; 5; 10 с и эквивалентные уровни виброускорения в октавных полосах со средними геометрическими частотами 8; 16; 31,5; 63; 125; 250; 500; 1000 Гц. Корректированный (Wh) уровень виброускорения с временами усреднения 1; 5; 10 с и эквивалентный корректированный уровень;

для общей вибрации - уровни виброускорения с временами усреднения 1; 5; 10 с и эквивалентные уровни виброускорения в третьоктавных полосах со средними геометрическими частотами 0,8: 1; 1.25; 1.6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80 Гц. Корректированные (Wd, Wk) уровни виброускорения с временами усреднения 1; 5; 10 с и эквивалентные корректированные уровни.

Технические характеристики: частотный диапазон измерений, Гц: шумомера...от 2 Гц до 20 кГц; анализатора...от 0,8 до 10000; виброметра, ЛИН..от 10 до 1250. Масса: не более 0,8 кг; диапазон измерений уровней виброускорения: 70-180 дБ; диапазон частот: 0,5-1250 Гц (производитель: Приборостроительная компания «НТМ-Защита»).

Измерения шума для контроля соответствия фактических уровней шума на рабочих местах допустимым уровням по действующим нормам должны производиться при работе не менее 2/3 установленных в данном помещении единиц технологического оборудования в наиболее часто реализуемом (характерном) режиме его работы.

Во время проведения измерений должно быть включено оборудование вентиляции, кондиционирования воздуха и другие обычно используемые в помещении устройства, являющиеся источником шума.

Определение шума проводится на постоянных рабочих местах, при отсутствии фиксированного рабочего места - в рабочей зоне, в точках наиболее частого пребывания работающих.

Следует подчеркнуть, что измерение шума должно выполняться в каждой точке не менее трех раз.

Микрофон располагается на высоте 1,5 м от пола или на уровне головы, если работа выполняется сидя или в других положениях; он должен быть направлен в сторону источника шума и удален не менее чем на 0,5 м от оператора, проводящего измерения. Перед проведением исследования осуществляют электрическую калибровку прибора.

Продолжительность измерения должна составлять для прерывистого шума полный технологический цикл; для колеблющегося во времени - 30 мин, разбитых на 3 цикла по 10 мин; для импульсного - 30 мин при общем числе отсчетов 360.

Для оценки шума на постоянных рабочих местах измерения следует проводить в точках, соответствующих установленным постоян- ным местам.

Для оценки шума на непостоянных рабочих местах измерения следует проводить в рабочей зоне в точке наиболее частого пребывания работающего

Результаты измерений необходимо представить в форме протокола. Средний уровень звука, средние октавные уровни звукового давления постоянного шума, эквивалентные уровни звука непостоянного шума рассчитывают следующим образом.

Определение среднего уровня звука. Для установления среднего значения уровней используют формулу:

Суммирование измеренных уровней L1 , L2, L3 ... Ln проводится попарно и последовательно. Сначала по разности двух уровней L1 и L2 по табл. 5.2. определяют величину добавки AL, которую прибавляют к большему уровню, в результате чего получают уровень L1 2 = L1 + AL. Уровень L1 2 суммируют таким же образом с уровнем L3 и получают уровень L13 и т.д. Результат округляют до целого числа.

Окончательный результат определяют с помощью табл. 5.2.

Пример 1. Определить среднее значение для измеренных уровней звука 84, 90 и 92 дБ А.

Определяем разность первых двух уровней - она равна 6 дБ.

По табл. 5.2 добавка для значения разности 6 равна 1 дБ, т.е. их сумма равна 90 + 1 = 91 дБ. Далее полученный уровень 91 дБ вычитаем из третьей величины - 92 дБ: их разность равна 1 дБ; величина добавки будет равна 2,5 дБ. Таким образом, суммарный уровень равен: 92 + 2,5 = 94,5 дБ, или округленно 95 дБ.

По табл. 5.3 величина 10 ? lg n для трех измеренных уровней равна 5 дБ. Окончательный результат для среднего значения равен: 95 - 5 = 90 дБ А.

Определение эквивалентного уровня звука. Эквивалентный по энергии уровень, являющийся однозначной характеристикой непостоянного шума, можно определить в результате усреднения фактических уровней с учетом времени действия каждого.

Расчет проводится следующим образом: к каждому измеренному уровню добавляется (с учетом знака) поправка по табл. 5.4, соответствующая его времени действия (в часах или процентах от общего времени действия), затем полученные уровни складываются в соответствии с табл. 5.2.

Таблица 5.2. Величина добавки

Таблица 5.4. Величины поправок в зависимости от времени воздействия

Пример 2. Уровни шума за 8-часовую рабочую смену составляли 80, 86, 94 дБ в течение 5, 2 и 1 ч соответственно. Этим срокам соответствуют поп- равки по табл. 5.4, равные -2, -6, -9 дБ.

Складывая их с уровнями шума, получаем 78, 80, 85 дБ. Затем, используя табл. 5.2, складываем эти уровни попарно: сумма первого и второго равна 82,2 дБ, а их сумма с третьим - 86,8 дБ. Округляя эту цифру, получаем окончательное значение эквивалентного уровня шума - 87 дБ. Таким образом, воздействие этих шумов равносильно действию шума с постоянным уровнем 87 дБ в течение 8 ч.

Пример 3. Прерывистый шум 119 дБА действовал в течение 6-часовой смены суммарно в течение 45 мин (т.е. 11% времени смены), уровень фонового шума в паузах (т.е. 11% времени смены) составлял 73 дБА.

По табл. 5.4. поправки равны -9 и -0,6 дБ; складывая их с соответствующими уровнями шума, получаем 110 и 72,4 дБ. Второй уровень значительно ниже первого, поэтому им можно пренебречь. Окончательно получаем эквивалентный уровень шума за смену 110 дБА, что превышает допустимый уровень 85 дБА на 25 дБ.

Гигиеническое нормирование. Основой всех правовых, организационных и технических мер по снижению производственного шума являются допустимые уровни шума на рабочих местах, в основу которых положено ограничение давления звука с учетом характера шума и особенностей труда.

При разработке новых технологических процессов, при проектировании, изготовлении, эксплуатации оборудования используются такие документы, как ГОСТ 12.1.003-83 «ССБТ. Шум, общие требо- вания безопасности» и санитарные нормы СН 2.24/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки». Извлечения из этого документа представлены в табл. 5.5.

Указанные уровни относятся к широкополосному постоянному и непостоянному шумам (кроме импульсного); для тонального и импульсного шумов величины должны быть снижены на 5 дБА. Для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума - 125 дБА.

Неблагоприятное влияние шума на работающего находится в зависимости от характера его трудовой деятельности, а именно - от тяжести и напряженности выполняемой работы. Исходя из этого, в

Таблица 5.5. Предельно допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука на рабочих местах (экспликация)

Таблица 5.6. Предельно допустимые уровни звука и эквивалентные уровни звука для трудовой деятельности

Примечание. Количественную оценку тяжести и напряженности труда можно провести в соответствии с «Руководством по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» (Р 2.2.2006-05).

дополнение к используемым санитарным нормам (СН 2.24/2.1.8.562- 96) необходимо также пользоваться руководством, в котором указаны корректированные предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом категории тяжести и напряженности труда - табл. 5.6 («Руководство 2.2.013- 94 «Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса»).

Определение результатов измерения шума и сравнение их с предельно допустимыми уровнями позволяют установить степень отклонения полученных показателей от гигиенических нормативов и класс условий труда по степени вредности и опасности при воздействии шума на работающих (табл. 5.7 ).

Исследование влияния шума на организм. Для оценки воздействия на здоровье рабочих производственного шума используются материалы изучения функционального состояния организма, медицинских осмотров, заболеваемости с временной утратой трудоспособности и др.

Для характеристики функционального состояния нервной системы используют хронорефлексометрию, треморометрию, тесты на внимание и др.

Состояние сердечно-сосудистой системы характеризуют частота пульса, артериальное давление, ЭКГ и др.

Состояние слухового анализатора исследуют с помощью камертона, шепотной, разговорной речи и тональной пороговой аудиометрии.

При камертональном исследовании определяется острота слуха при воздушной и костной звукопроводимости.

Оценку слуховой функции камертонами проводят путем количественного определения времени (в секундах), в течение которого максимально звучащий камертон воспринимается обследуемым через воздух или кость. В практических целях используют набор из четырех камертонов (С128, С1024, С2048, С4096). Полученные данные оценивают путем сравнения с паспортными данными применяемого для исследования набора камертонов. Этот метод прост в эксплуатации. Недостатком его является то, что он не дает представления о степени потери слуха, на основании которой решается вопрос о трудоспособности работающего.

Для ориентировочной оценки состояния слуха используют шепотную и разговорную речь как наиболее естественный критерий состо-

Таблица 5.7. Классы условий труда в зависимости от уровней шума, локальной и общей вибрации, инфра- и ультразвука на рабочем месте

яния слуха. Расстояние, на котором исследуемый разборчиво понимает речь, служит ориентировочным показателем остроты слуха. Шепотная речь исследуется с помощью акуметрической таблицы: слух считается нормальным при восприятии шепотной речи на расстоянии 6 м.

Разговорную речь человек с нормальным слухом воспринимает на расстоянии до 60-80 м. В обычных помещениях на таком расстоянии исследование маловероятно, поэтому слух оценивают шепотной речью и лишь при значительно ослабленной слуховой функции исследуется разговорная речь на расстоянии 6 м.

Одним из основных и широко распространенных методов исследования остроты слуха является тональная аудиометрия. С помощью этого метода определяются следующие показатели.

1. Постоянные смещения порогов слуха (ПСП), возникающие вследствие систематического длительного воздействия шума.

2. Временные смещения порогов слуха (ВСП), отражающие тот временной сдвиг слуховой чувствительности, который зависит от шумовой нагрузки за рабочую смену.

Тональная пороговая аудиометрия дает качественную и количественную характеристику слуховой функции, выраженную в сравниваемых величинах (в децибелах - дБ) над нормальным порогом слышимости (2?10-5 Па), заложенным в прибор в виде нулевого уровня.

Исследование осуществляется с помощью электроакустической аппаратуры - аудиометра, эквивалентные пороговые уровни которого должны соответствовать ГОСТу 13655-75. Применяемые аудиометры генерируют чистые тоны: 125, 250, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Гц с интенсивностью до 100 дБ при скачкообразной регулировке интенсивности до 5 дБ.

Результаты исследования порогов слухового восприятия чистых тонов переносят на аудиограмму, где на оси абсцисс указана частота в Гц, а на оси ординат - порог слухового восприятия в дБ (т.е. мини- мальное звуковое давление, которое воспринимается ухом обследуемого).

Аудиометрические исследования с целью установления потерь слуха (постоянное смещение порога слышимости - ПСП) проводятся не менее чем через 14 ч после того, как на исследуемого воздействовал производственный шум с уровнем более 80 дБ.

Аудиометрические исследования с целью определения временных смещений порогов слышимости - ВСП (обратимое функциональное

изменение слуховой чувствительности от воздействия шума) необходимо выполнять на 5-й минуте после прекращения шумового воздействия на исследуемого. Изучение состояния слухового анализа- тора проводится согласно ГОСТ 12.4.062-78 «Методика определения потерь слуха человека».

Потери слуха оцениваются для хуже слышащего уха в соответствии с табл. 5.8. Степень потери слуха устанавливают по величине потери на речевых частотах с учетом потери слуха на частоте 4000 Гц как признака профессионального воздействия шума.

Таблица 5.8. Величины потери слуха, дБ

Профилактические мероприятия. Борьба с вредным воздействием производственного шума включает целый комплекс мероприятий, состоящих из технических, организационных, архитектурно-планировочных, медицинских методов и мер профилактики.

К наиболее эффективным относятся технические способы защиты: уменьшение шума в источнике его образования, снижение по пути распространения (звукоизоляция и звукопоглощение), использование средств индивидуальной защиты, замена оборудования менее шумным, рациональное его размещение.

Для улучшения условий труда важное значение имеет предупредительный санитарный надзор по разработке шумобезопасной тех- ники. Шумовые характеристики машин должны быть указаны в их паспорте, они должны отвечать требованиям и рекомендациям соот-

ветствующих ГОСТов, обеспечивающих выполнение установленных ПДУ шума на рабочих местах. К нормативно-техническим документам на оборудование и машины относятся «ССБТ. Шум. Методы установления шумовых характеристик стационарных машин», ГОСТ 23941-79 «Шум. Методы определения шумовых характеристик. Общие требования», а также ГОСТы на машины конкретных типов: ГОСТ 12.4.095-80 «Машины сельскохозяйственные самоходные. Методы определения вибрационных и шумовых характеристик», СН 2498-81 «Санитарные нормы шума на морских судах» и др.

Одной из важнейших мер медицинской профилактики вредного влияния шума является проведение предварительных и периодических медицинских осмотров: лица, подвергающиеся воздействию этого производственного фактора, подлежат предварительным и периодическим медицинским осмотрам при поступлении на работу в соответствии с приказом Минздрава РФ «О порядке проведения предварительных и периодических медицинских осмотров работ- ников и медицинских регламентах допуска к профессии» ? 90 от 14.03.1996 г. При поступлении на работу противопоказаниями к приему являются стойкое понижение слуха хотя бы на одно ухо любой этиологии, отосклероз и другие хронические заболевания уха с неблагоприятным прогнозом, нарушение функции вестибулярного аппарата, в том числе болезнь Меньера.

Периодические осмотры рабочих шумных цехов проводят отоларинголог, невропатолог, терапевт (с обязательным исследованием слуха - аудиометрией). Частота осмотров находится в зависимости от уровней шума на рабочих местах (от 81 до 99 дБА - раз в 2 года, от 100 дБА и выше - раз в год).

Весьма эффективным способом защиты от шума является рационализация режимов труда путем использования регламентирован- ных перерывов (табл. 5.9). Длительность дополнительных перерывов устанавливается с учетом уровня шума, его спектра и наличия или отсутствия средств индивидуальной защиты (противошумов). Для тех же групп работников, где по характеру работы (прослушивание сигналов и т.п.) не допускается применение противошумов, учитывается только уровень шума и его спектр («Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» Р 2.2.2006-05).

Отдых в период регламентированных перерывов следует проводить в специально оборудованных помещениях. Во время обеденного

Примечание. Длительность перерыва в случае воздействия импульсного шума должна быть такой же, как для постоянного шума с уровнем на 10 дБА выше импульсного. Например, для импульсного шума 105 дБА длительность перерывов должна быть такой же, как при постоянном шуме в 115 дБА.

перерыва работающие при воздействии повышенных уровней шума должны находиться в оптимальных акустических условиях (при уровне звука не выше 50 дБА).

Шум - один из наиболее распространенных факторов производственной среды. Источниками звуков и шумов являются . Основные производственные процессы, сопровождающиеся шумом, это:

  • клепка
  • штамповка
  • испытание авиамоторов
  • работа на ткацких станках и др.

Создание новых видов современной промышленной техники, оборудования больших мощностей и значительного числа оборотов приводят к возрастанию интенсивности шума, усложнению его характера.

Действие шума может проявляться в:

  • специфической патологии органа слуха;
  • неблагоприятном влиянии на нервную, сердечно-сосудистую и другие системы организма;
  • снижении производительности труда;
  • возникновении травм.

Производственный шум

Под шумом обычно понимается комплекс звуков разной интенсивности и высоты, беспорядочно изменяющихся во времени, неблагоприятно действующих на организм человека.

С физической точки зрения звук и шумы представляют собой волнообразно распространяющееся колебательное движение частиц упругой среды. Чем больше амплитуда колебаний звучащего тела, тем больше амплитуда звукового давления и соответствующая сила звука или шума.

Человеческое ухо способно воспринимать колебания в диапазоне от 16 до 20 000 в секунду. Звуковое колебательное движение характеризуется:

  • Амплитудой
  • Периодом
  • Частотой колебания

Число колебаний, которое совершает частица в единицу времени, называется частотой колебания и измеряется в герцах (Гц). Герц - одно колебание в секунду.

Для санитарно-гигиенической характеристики шума на производстве пользуются не физическими (давление, энергия), а относительными величинами, так называемыми децибелами (дБ), основанными на субъективном восприятии звука.

Шкала децибел имеет то преимущество, что весь огромный диапазон интенсивностей (от едва слышимых до чрезмерно громких) выражается числами от 0 до 140 дБ. Это позволяет при характеристике уровней шумов оперировать малыми числами.

Воспринимаемый нами шелест листьев равен 30 дБ,
громкая речь - 70 дБ,
автомобильный сигнал – 90 дБ,
шум в ткацких цехах равен 105-110 дБ,
при ручной клепке металла 110 — 115 дБ.

Важной характеристикой шума является плотность распределения мощности по спектру частот.

Если в составе шума преобладают интенсивности звуков с частотой колебаний не более 300-400 Гц, то такой шум называют низкочастотным. При преобладании интенсивности звуков с частотой колебаний от 400 до 1000 Гц шум называют среднечастотным, выше частоты 1000 Гц — высокочастотным.

Шум принято разделять также на:

  • Стабильный
  • Импульсный

В производственных условиях на первый план выступает воздействие шума на орган слуха. Воздействие шума может сказаться на работоспособности учащихся, мешать нормальному ходу обучения.

Так, шум в 95-105 дБ, характерный для текстильного производства, вызывал у учащихся ухудшение показателей мышечной и умственной работоспособности.

Существенные изменения в функциональном состоянии центральной нервной системы под влиянием шума отмечались у учащихся, проходящих производственное обучение в шумных цехах различных производств.

Более значительные, чем у взрослых механизаторов сельского хозяйства, наблюдались сдвиги в функциональном состоянии 17-летних учащихся сельских ПТУ, подвергавшихся воздействию высокочастотного шума. Отмеченные сдвиги наступали уже через 3 часа после начала работы и выражались в понижении работоспособности, остроты слуха почти на 33%, т.е. развитии у них выраженного утомления.

Исследования функционального состояния учащихся, работающих в слесарных и токарных мастерских профтехучилищ, выявили изменения артериального давления, сдвиги со стороны центральной нервной и мышечной систем, а также снижение общей работоспособности. Подобные явления связаны с воздействием факторов производственной среды и в первую очередь шума.

Исследования, проведенные среди взрослых рабочих и подростков, позволили выявить у последних более сильное снижение слуха по сравнению со взрослыми, работающими в аналогичных условиях производственной среды.

Борьба с производственным шумом

Для борьбы с производственным шумом предусматриваются следующие мероприятия:
1. изоляция источников шума в производственных помещениях путем установления плотных деревянных, кирпичных перегородок с перенесением за перегородку. При невозможности изолировать источники шума возле них устанавливают звукоизолированные кабины для обслуживающего персонала;

2. установка агрегатов, работа которых сопровождается сильным сотрясением (молоты, штамповочные автоматы и др.), на виброизолирующие материалы или специальный фундамент;

3. замена шумных технологических процессов бесшумными (штамповка и ковка заменяются обработкой давлением, электросваркой);

4. расположение шумных цехов на определенном расстоянии от жилых строений с соблюдением зон разрывов; кроме того, их сосредоточивают в одном месте и окружают зелеными насаждениями; утолщенные стены цехов с внутренней стороны облицовывают специальными акустическими плитами;

5. применение индивидуальных приспособлений для защиты органа слуха.

Для профилактики отрицательного воздействия шумового фактора в учебно-производственных помещениях предусматривают следующие мероприятия:
1. Снижение шума в источнике его образования.

2. Устранение возможности передачи шума от источника и из помещения, где установлены агрегаты, создающие шум, в соседние помещения и за пределы здания за счет усиления звукоизолирующих свойств конструкций.

3. Снижение уровня шума в помещениях с шумным оборудованием.

4. Рациональная планировка помещений, имеющих источники шума.

Профилактика

Ограничение вредного воздействия шума на организм обучающихся и работающих подростков может быть достигнуто также с помощью:

  • технической и медицинской профилактики воздействия шума;
  • использования коллективных и индивидуальных средств защиты;
  • организации рационального режима труда и отдыха подростков.

Техническая профилактика проводится обслуживающим персоналом, осуществляющим постоянный контроль за исправностью, герметизацией, звукоизоляцией производственного оборудования, состоянием вентиляционных установок.

Помещения, имеющие источники ума, не должны облицовываться керамической плиткой и окрашиваться масляной краской. Для усиления звукопоглощения под оборудованием рекомендуется размещать функциональные поглотители в виде кубов, конусов и др.

Рациональная планировка помещений предусматривает раздельное размещение шумных и тихих цехов и оборудования.

Медицинская профилактика воздействия шума заключается в своевременной организации предварительных и периодических медицинских осмотров учащихся. При приеме подростков для обучения специальностям, освоение которых связано с воздействием производственного шума, должны строго учитываться медицинские противопоказания.

Коллективные и индивидуальные средства защиты используются при невозможности проведения мероприятий по снижению производственного шума до нормативных уровней. К таким средствам могут быть отнесены:

  • звукоизолированные кабины наблюдения и дистанционного управления
  • переносные полузакрытые кабины
  • экраны
  • тихие комнаты отдыха
  • различные индивидуальные средства защиты органа слуха: наушники, вкладыши, тампоны и др.

Организация рационального режима труда и отдыха будет способствовать уменьшению степени неблагоприятного воздействия шума на организм.

Опасный шум

Предельный уровень шума для подростков на производстве - 65 дБ. В настоящее время принято оценивать шумы в виде показателя предельного спектра (ПС), численная величина которого соответствует уровню звукового давления шума в децибелах со среднегеометрической частотой 1000 Гц.

Учитывая, что не во всех случаях удается снизить производственный шум до установленных норм (ПС-65), в целях профилактики целесообразно введение таких режимов труда, которые учитывали бы длительность пребывания подростков-учащихся на рабочих местах.

Кроме того, в работе должны быть предусмотрены обязательные 10-15-минутные перерывы, которые проводят в специально отведенных помещениях, изолированных от воздействия шумовых факторов. Такие перерывы устраиваются для подростков, работающих:

  • первый год — через 50 мин работы;
  • второй год - через 1,5 ч работы;
  • третий год - через 2 ч работы.

По истечении допустимого времени работы в условиях производственного шума подростки могут выполнять другую работу по усмотрению администрации.

Сейчас каждый второй человек не только ежедневно испытывает усталость, но и около одного раза в неделю чувствует резкую головную боль. С чем на самом деле это связано? Шум может оказывать как положительное, так и негативное влияние на здоровье человека. Например, последнее время стало популярным использовать белый шум для успокоения ребенка и нормализации его сна.

Негативное воздействие шума на организм

Негативное влияние зависит от того, как часто и как долго человек находится под влиянием высокочастотных звуков. Вред шума абсолютно не уступает его пользе. Шум и его воздействие на человека изучали еще в древние времена. Известно, что в Древнем Китае часто применяли пытки звуком. Такая казнь считалась одной из самых жестоких.

Ученые доказали, что высокочастотные звуки отрицательно влияют на умственно-психическое развитие. Помимо этого люди, которые находятся в постоянном шумовом стрессе, быстро устают, страдают от частых головных болей, бессоницы, а также потери аппетита. Со временем у таких людей развиваются сердечно-сосудистые заболевания, психические расстройства, нарушается обмен веществ и работа щитовидной железы.

В крупных городах шум оказывает необратимое негативное влияние на организм человека. Сегодня с этой проблемой пытается справиться огромное количество экологов. Чтобы изолировать свой дом от шумовых раздражителей большого города, установите звукоизоляцию.

Уровень шума

Шум в децибелах - это сила звука, которую воспринимает слуховой аппарат человека. Считается, что человеческий слух воспринимает звуковые частоты в пределах 0-140 децибел. Звуки наименьшей интенсивности влияют на организм благоприятным образом. К таковым относятся звуки природы, а именно дождя, водопада и подобные. Допустимым считается тот звук, который не наносит вреда человеческому организму и слуховому аппарату.

Шум - это общее определение для разночастотных звуков. Существуют общепринятые нормы уровня звука в общественных и частных местах нахождения человека. Например, в больницах и жилых помещениях доступная звуковая норма - это 30-37 дБ, в то время как производственный шум достигает 55-66 дБ. Однако нередко в густонаселенных городах звуковые колебания достигают гораздо большей отметки. Врачи считают, что звук, который превышает отметку 60 дБ, вызывает у человека нервные расстройства. Именно по этой причине люди, проживающие в крупных городах, испытывают и Звуки, превышающие 90 децибел, способствуют снижению слуха, а более высокие частоты могут вызвать летальный исход.

Положительное воздействие звука

Воздействие шума используют и в лечебных целях. Низкочастотными волнами улучшают умственно-психическое развитие и эмоциональный фон. Как говорилось ранее, к таким звукам относят издаваемые природой. Воздействие шума на человека полностью не изучено, однако считается, что слуховой аппарат взрослого человека выдерживает 90 децибел, в то время как детские перепонки выдерживают только 70.

Ультра- и инфразвуки

Инфра- и ультразвук оказывает наиболее отрицательное воздействие на слуховой аппарат человека. От такого шума невозможно уберечься, поскольку эти колебания слышат только животные. Такие звуки опасны тем, что воздействуют на внутренние органы и могут вызывать их повреждение и разрыв.

Различие звука и шума

Звук и шум - это очень схожие по значению слова. Однако различия все же есть. Под звуком подразумевается все то, что мы слышим, а шум - это тот звук, который не нравится определенному человеку или группе людей. Это может быть чье-то пение, лай собаки, звук производственный шум и еще огромное количество раздражающих звуков.

Разновидности шума

Шум разделяется, по спектральной характеристике на десять разновидностей, а именно: белый, черный, розовый, коричневый, синий, фиолетовый, серый, оранжевый, зеленый и красный. Все они имеют свои особенности.

Белый шум характеризуется равномерным распределением частот, а розовый и красный их повышением. В то же время черный является самым загадочным. Иными словами, черный шум - это тишина.

Шумовая болезнь

Воздействие шума на слух человека колоссально. Помимо постоянных головных болей и хронической усталости, от высокочастотных волн может развиваться шумовая болезнь. Врачи ее диагностируют пациенту, если тот жалуется на существенное снижение слуха, а также на изменения в работе центральной нервной системы.

Начальные признаки шумовой болезни - звон в ушных раковинах, головная боль, а также необоснованная хроническая усталость. Особенно опасно поражение слуха при контакте с ультра- и инфразвуками. Даже после короткого взаимодействия с таким шумом может последовать полная потеря слуха и разрыв барабанных перепонок. Признаками поражения от такого вида шума является резкая боль в ушах, а также их заложенность. При таких признаках следует незамедлительно обращаться к специалисту. Чаще всего при длительном воздействии шума на слуховой орган наблюдается нарушение нервной, сердечно-сосудистой деятельности и вегетососудистая дисфункция. Повышенная потливость тоже нередко сигнализирует о шумовом заболевании.

Шумовая болезнь не всегда поддается лечению. Нередко можно восстановить только половину слуховых возможностей. Для устранения заболевания специалисты рекомендуют прекратить контакт с высокочастотными звуками, а также назначают лекарственные препараты.

Существует три степени шумовой болезни. Первая степень заболевания характеризуется неустойчивостью слухового аппарата. На данном этапе заболевание с легкостью поддается лечению, а после реабилитации пациент может снова контактировать с шумом, но при этом обязан проходить ежегодное обследование ушных раковин.

Вторая степень болезни характеризуется теми же признаками, что и первая. Единственное отличие - это более тщательное лечение.

Третий этап шумовой болезни требует более серьезного вмешательства. С пациентом индивидуально обсуждается причина развития болезни. Если это следствие профессиональной деятельности пациента, рассматривается вариант смены работы.

Четвертая стадия заболевания наиболее опасна. Больному рекомендуют полностью исключить воздействие шума на организм.

Профилактика шумовой болезни

При частом взаимодействии с шумом, например, на работе, требуется ежегодно проходить медосмотр у специалиста. Это позволит на ранних стадиях диагностировать и устранить заболевание. Считается, что шумовому заболеванию также подвержены подростки.
Причиной этого является посещение клубов и дискотек, где уровень звука превышает 90 децибел, а также частое прослушивание музыки в наушниках на высоком уровне громкости. У таких подростков снижается уровень мозговой деятельности, ухудшается память.

Промышленные звуки

Производственный шум - один из самых опасных, потому сопровождают нас чаще всего на рабочем месте, и исключить их воздействие практически невозможно.
Промышленные шумы возникают вследствиие работы производственного оборудования. Диапазон колеблется от 400 до 800 Гц. Специалистами было проведено обследование общего состояния барабанных перепонок и ушных раковин кузнецов, ткачей, котельщиков, летчиков и многих других работников, которые взаимодействуют с производственным шумом. Было выяснено, что такие люди имеют ослабленный слух, а некоторым из них диагностировали заболевания внутреннего и среднего уха, которые в дальнейшем могли привести к глухоте. Для устранения промышленных звуков или их понижения требуется усовершенствование самих машин. Для этого заменяют шумящие детали на бесшумные и безударные. Если данный процесс недоступен, еще одним вариантом считается перемещение промышленной машины в отдельную комнату, а ее пульта - в шумоизолированное помещение.
Нередко для защиты от производственного шума используют противошумы, которые защищают от звуков, уровень которых невозможно понизить. К такой защите можно отнести беруши, наушники, шлемы и другие.

Влияние шума на детский организм

Помимо плохой экологии и массы других факторов, на уязвимый детский и подростковый организм также воздействует шум. Так же, как и у взрослых, у детей наблюдается ухудшение слуха и работы органов. Несформированный организм не может защитить себя от звуковых факторов, поэтому его слуховой аппарат наиболее уязвим. Для предотвращения снижения слуха требуется как можно чаще проводить ребенку медосмотр у специалиста. Чем раньше будет выявлено заболевание, тем легче и быстрее будет проведено лечение.

Шум - это явление, которое сопровождает нас на протяжение всей жизни. Мы можем не замечать его воздействия и даже не задумываться о нем. Правильно ли это? Исследования показали, что та головная боль и усталость, которую мы обычно связываем с тяжелым рабочим днем, нередко связана именно с шумовыми факторами. Если вы не желаете страдать от постоянного плохого самочувствия, следует задуматься о своей защите от громких звуков и ограничивать контакт с ними. Соблюдайте все рекомендации для сохранения и Будьте здоровы!