Фракционирование в лучевой терапии. Зависимость степени поражения нормальных тканей от различных режимов фракционирования

Доза излучения, которую удается подвести к опухоли, ограничивается толерантностью нормальных тканей.

Из курса радиобиологии

Толерантность - это предельная лучевая нагрузка, не приводящая к необратимым изменениям тканей.

Лучевой терапевт, определяя режим облучения и необходимую дозу поглощенной энергии для подавления , должен учесть возможность и предвидеть степень поражения нормальных тканей, когда вероятность лучевых осложнений станет выше, чем планируемый канцеролитический эффект облучения опухоли. Это относится не только к окружающим опухоль органам, но и к определенным тканевым образованиям самой опухоли (соединительнотканные структуры, сосуды).

От регенераторной способности последних зависит течение заболевания. На основании приобретенного опыта лучевые терапевты определили толерантную дозу для различных тканей организма при разных режимах облучения. Как видно из рисунка, с увеличением общего числа сеансов, за которые реализуется запланированный курс лучевой терапии, доза, переносимая нормальной тканью, увеличивается. Так, в случае лечения опухолей головного мозга при запланированной очаговой опухолевой дозе 60 Гр можно со 100% гарантией избежать лучевого поражения ткани головного мозга при реализации ее в течение 40 - 45 дней (30 фракций по 2 Гр в день при облучении 5 раз в неделю).

Толерантность головного мозга в зависимости от дозы
и продолжительности курса лечения

а - минимальный;
б - максимальный уровни дозы, при которых может возникнуть некроз мозговой ткани.

Для выражения величины толерантности тканей при фракционированном облучении предложено два понятия: «кумулятивный радиационный эффект» (КРЭ) и «время - доза - фракционирование» (ВДФ). На основании приобретенного опыта лучевые терапевты эмпирически определили толерантную дозу для различных тканей.

Так, величина ее для соединительной ткани организма (в том числе кожи, подкожной клетчатки, элементы стромы других органов) составляет 1800 ерэ (ерэ - единица радиационного эффекта в системе КРЭ) или 100 условных единиц (в системе ВДФ). Ориентировочные данные по толерантным дозам излучения для различных органов и тканей человека приведены в таблице.

Ориентировочные значения переносимых (толерантных) доз для некоторых органов и тканей (для гамма-излучения при условии ежедневного облучения 5 раз в неделю в дозе не более 2 Гр)

Орган (ткань) Погло щенная доза, Гр Кумулятивный радиационный
эффект КРЭ, ерэ
Фактор время - доза - фракционирование
(условн. ед.)
Головной мозг 60 2380 168
Продолговатый мозг 30 1020 42
Спинной мозг 35 1250 58
Хрусталик глаза 50 150 7
Кожа 40 1860 100
Сердце 65 2920 212
Легкие 30 1020 49
Желудок 35 1230 57
Тонкая кишка 40 1230 57
Прямая кишка 50 1600 84
Печень 50 1580 83
Почка (одна) 40 1230 20

Эти цифры, показывающие величину толерантной дозы для различных тканей, получены при следующих режимах облучения: длительность курса не менее 3 и не более 100 дней, число фракций больше 5 при интервале между фракциями не менее 16 ч, при поле облучения, равном 8 X 10 см, и мощности дозы излучения не менее 0,2 Гр/мин. Толерантность нормальных тканей зависит от объема облучаемых тканей. При малых полях суммарная доза может быть повышена, а при больших - снижена.

В клинической практике часто встречаются ситуации, при которых ритмичность запланированного курса лучевой терапии нарушается ввиду ухудшения состояния больного. Иногда специально планируются курсы облучения с чередованием крупных и мелких фракций. В этих случаях для определения толерантности тканей необходимо определение фактора ВДФ. Специальные расчеты позволили определить значение ВДФ для различных доз и интервалов между облучениями.

Использование факторов КРЭ и ВДФ позволяет выбрать рациональный режим фракционирования и величину суммарной очаговой дозы в опухоли.

«Медицинская радиология»,
Л.Д.Линденбратен, Ф.М.Лясс

Размер: px

Начинать показ со страницы:

Транскрипт

1 ОСНОВЫ ФРАКЦИОНИРОВАНИЯ ДОЗЫ ЛУЧЕВОЙ ТЕРАПИИ Е.Л. Слобина РНПЦ ОМР им. Н.Н. Александрова, г. Минск Ключевые слова: фракционирование дозы, лучевая терапия Изложены радиобиологические основы фракционирования дозы лучевой терапии, проанализировано влияние факторов фракционирования дозы лучевой терапии на результаты лечения злокачественных опухолей. Приведены данные о применение различных режимов фракционирования при лечении опухолей с высоким пролиферативным потенциалом. BASE OF DOSE FRACTIONATION OF RADIOTHERAPY E.L. Slobina Key words: dose fractionation, radiotherapy Radiobiological grounds of dose fractionation of radiotherapy were stated, the influence of dose fractionation factors of radiotherapy on the results of cancer treatment was analyzed. The application data of different schedules of dose fractionation, as well as treatment of tumors with high proliferative potential, were presented. Одним из методов улучшения результатов лучевой терапии является разработка различных режимов подведения дозы (фракционирования). И поиск оптимальных режимов фракционирования дозы для каждого вида опухолей является активным полем деятельности врачей радиационных онкологов. В 1937г. Coutard и Baclesse (Франция) сообщили о лечении рака гортани 30 небольшими дозами X лучей, подводимыми 6 дней в неделю за 6 недель. Это было первое сообщение о лечении опухоли, расположенной на глубине, с успешным использованием наружного облучения и первый пример фракционирования дозы при лечении больных .

2 Большинство используемых сегодня режимов лучевой терапии разделяются на несколько больших групп по режиму подведения дозы (фракционированию) и основаны на использовании основных правил радиобиологии. Основные правила радиобиологии (The Fours Rules of Radiobiology) были концептуально изложены Withers H. R. (1975) и представляют собой попытку понимания механизмов эффектов, происходящих в результате фракционирования дозы как в нормальных тканях, так и в опухолях : 1. Процесс репарации клеток от сублетальных и потенциально летальных повреждений начинается во время самого облучения и практически заканчивается в течение 6 часов после облучения. Кроме того, репарация сублеталей принимает особое значение при использовании малых доз радиации. Различия между репаративным потенциалом нормальных и опухолевых клеток могут увеличиваться при подведении большого количества малых доз (т.е. максимальное увеличение различия наблюдается при бесконечно большом количестве фракций бесконечно малых доз). 2. Если говорить о клеточной репопуляции, то совершенно определенно, что в течение лучевой терапии нормальные ткани и опухоли "драматически" расходятся в своей репопуляционной кинетике. Этому процессу, так же как и репарации, уделяется большое внимание при разработке режимов фракционирования, позволяющих максимально расширить терапевтический интервал. Здесь уместно сказать об "ускоренной репопуляции", под которой подразумевается более быстрое размножение клеток по сравнению с размножением до облучения. Резервом для ускоренной пролиферации является сокращение длительности клеточного цикла, меньший выход клеток из цикла в фазу

3 "плато" или покоя G0 и снижение величины фактора потери клеток, который в опухолях может достигать 95 %. 3. В результате облучения происходит обогащение клеточной популяции клетками, находившимися во время сеанса в радиорезистентных фазах цикла, что обуславливает процесс рассинхронизации клеточной популяции. 4. Процесс реоксигенации специфичен для опухолей, так как там изначально имеется фракция гипоксических клеток. В первую очередь при облучении гибнут хорошо оксигенированные и потому более чувствительные клетки. Вследствие этой гибели снижается общее потребление опухолью кислорода и таким образом увеличивается его поступление в ранее гипоксические зоны. В условиях фракционирования благодаря реоксигенации приходится иметь дело с более радиочувствительной опухолевой популяцией, чем при однократном лучевом воздействии. По данным ведущих лабораторий в некоторых опухолях эти процессы нарастают к концу курса лучевой терапии. Факторами фракционирования дозы, влияющими на результаты лечения, являются : 1. Доза за фракцию (разовая очаговая доза). 2. Общая доза (суммарная очаговая доза) и число фракций. 3. Общее время лечения. 4. Интервал между фракциями. Влияние величины дозы за фракцию на ткани, подвергающиеся облучению, достаточно хорошо объясняется Fowler J. при помощи линейноквадратичной модели . Каждая фракция является причиной одинакового числа логарифма летальных исходов в клеточной популяции. Плечо кривой

4 выживаемости восстанавливается в интервале времени, если он не меньше 6 часов. Схематическое изображение этих процессов представлено на рисунке 1. Log 10 выживаемости клеток Е Д 1 Д 2 Д 4 Д 8 Д 70 ERD/BED= E/a Общая доза (Гр) Рисунок 1 - Зависимость выживаемости клеток от величины и количества фракций Таким образом, результирующая кривая логарифма летальных исходов в клеточной популяции при мультифракционировании дозы является прямой линией вдоль хорды, соединяющей начало облучения и точку дозы за фракцию на кривой клеточной выживаемости при подведении одной фракции. При повышении общей дозы кривая выживаемости становится более крутой для поздних реакций, чем для ранних, что и было первоначально отмечено Withers H.R. в экспериментах на животных Схематическое изображение этих процессов представлено на рисунке 2 .

5 Общая доза (Гр) spinal cord (White) skin (Duglas 76) skin (Fowler 74) kidney kidney (Hopewell 77) colon (Caldwell 75) (Whither 79) spinal cord v.d.kogel 77) jejunum (Thames 80) testis (Thames 80) ранние эффекты поздние эффекты РОД (Гр) Рисунок 2 - Зависимость выживаемости клеток от общей дозы, количества фракций и величины дозы за фракцию (Непрерывными линиями обозначены поздние эффекты, пунктирные кривые обозначают ранние эффекты) Зависимость общей дозы (или эффекта) от величины дозы за фракцию объясняется тем, что кривые дозного ответа для критических клеток в рано реагирующих тканях менее искривлены, чем в поздно реагирующих . Схематическое изображение этих процессов представлено на рисунке 3. Повреждение Поздние реакции a/b=3гр Ранние реакции и опухоли a/b=10гр Д n1 Д n2 Д n1 Д n2 Общая доза Рисунок 3 - Изменение общей дозы (или эффекта) в зависимости от величины дозы за фракцию Общая доза (суммарная очаговая доза) должна быть увеличена, если увеличено общее время лечения (для достижения необходимого эффекта) по

6 двум причинам: 1 - если используются небольшие дозы за фракцию, то каждая из них имеет меньший эффект, чем большая доза за фракцию; 2 - для компенсации пролиферации в опухолях и рано реагирующих нормальных тканях. Многие опухоли пролиферируют так же быстро, как рано реагирующие нормальные ткани. Однако большое увеличение общей дозы требует увеличения общего времени лечения. Кроме того, поздние осложнения имеют небольшой временной фактор или не имеют его вообще. Этот факт не позволяет увеличивать общую дозу достаточно для подавления опухолевой пролиферации, если общее время лечения большое . Увеличение общего времени лечения на одну неделю показывает снижение локального контроля на 6 25 % для опухолей головы и шеи . Таким образом, укорочение общего времени лечения должно быть направлено на лечение опухолей, которые могут быть идентифицированы (при помощи проточной цитометрии) как быстро пролиферирующие . По данным Denecamp J. (1973) рано реагирующие ткани имеют период 2 4 недели от начала лучевой терапии до начала компенсаторной пролиферации. Это эквивалентно времени обновления клеточной популяции у человека (рисунок 4). Требуемая дополнительная доза (Гр) РОД 3 Гр 130 сгр / день J. Denekamp (1973) Время после 1-й фракции

7 Рисунок 4 - Требуемая дополнительная доза для компенсации клеточной пролиферации (J. Denekamp, 1973) Поздно реагирующие нормальные ткани, в которых встречаются поздние лучевые осложнения, следуют тем же принципам, но они не имеют компенсаторной пролиферации в течение недель лучевой терапии, и нет никакой зависимости эффекта или общей дозы от общего времени лечения. Схематическое изображение этих процессов представлено на рисунке 5. Требуемая дополнительная доза (Гр) 0 10 Ранние реакции Поздние реакции Дни после начала облучения Рисунок 5 - Требуемая дополнительная доза для компенсации клеточной пролиферации у рано и поздно реагирующих тканей Многие опухоли пролиферируют в течение лучевой терапии, часто эти процессы сравнимы с процессами, происходящими в рано реагирующих нормальных тканях. Таким образом, уменьшение общего времени лечения в лучевой терапии приводит к повышению повреждения быстро пролиферирующих нормальных тканей (острые, ранние реакции) (1); не увеличению повреждений поздно реагирующих нормальных тканей (при условии, что не увеличена доза за фракцию) (2); увеличению повреждения опухолей (3).

8 Терапевтическая польза зависит от баланса между (1) и (3) пунктами; от большой общей дозы за короткое общее время лечения для того, чтобы избежать серьезных поздних осложнений (2) . Overgaard J. et al. (1988) обеспечили хорошие примеры этих принципов. На рисунке 6 показано снижение локального контроля, когда перерыв в 3 недели был введен в 6-недельный режим классического фракционирования. Опухолевый ответ показан в двух разных кривых, показывающих пролиферацию в дополнительное к общему время. Потери локального контроля при одной и той же общей дозе (60 Гр) могут достигать % . Локальный контроль (%) недель 60 Гр 57 Гр 72 Гр 68 Гр сплит-курс 10 недель Общая доза (Гр) Рисунок 6 - Оценка дозного ответа для плоскоклеточного рака гортани, леченного ежедневно или сплит курсом. J. Overgaard et al. (1988) Поздний отек (эдема) представлен кривой, показывающей независимость эффекта от общего времени лечения (рисунок 7) .

9 Частота отека (%) Гр 68 Гр 72 Гр Общая доза (Гр) Рисунок 7 - Частота отека тканей гортани в зависимости от общей дозы. J. Overgaard et al. (1988) Таким образом, по мнению Fowler J. и Weldon H., необходимо сохранять общее время лечения достаточно коротким, и, в связи с этим, создавать новые укороченные протоколы лечения для быстро пролиферирующих опухолей . Если говорить о влиянии величины интервала между фракциями, то многофакторный анализ исследований RTOG, проведенный под руководством К. Fu в 1995 году, показал, что интервал между фракциями является независимым прогностическим фактором для развития серьезных поздних осложнений . Было показано, что кумулятисная частота поздних лучевых осложнений 3й 4й степеней увеличилась с 12% за 2 года наблюдения до 20% за 5 летний период наблюдения у пациентов, у которых интервал между фракциями лечения был менее 4,5 часов, в то же время если интервал между фракциями был больше 4,5 часов, то частота поздних лучевых реакций не увеличивалась и составляла 7,3% за 2 года и 11,5% за 5 лет. Эта же зависимость наблюдалась во всех известных исследованиях, где фракционирование дозы проводилось с интервалом менее 6 часов . Данные этих исследований представлены в таблице 1.

10 Золотые правила фракционирования определены и сформулированы Withers H.R. (1980) : подводить общую дозу, не превышающую толерантную дозу поздно реагирующих тканей; использовать достаточно большое количество фракций, насколько это возможно; доза за фракцию не должна превышать 2 Гр; общее время должно быть настолько коротким, насколько это можно обеспечить; интервалы между фракциями должны быть не менее 6 часов. Таблица 1 данные исследований, использовавшие фракционирование дозы с интервалом менее 6 часов. Источник Период наблюдени Локализация EORTC ОГШ 22811, 1984 Van den Bogaert (1995) EORTC 22851, Horiot (1997) CHART, Dische (1997) RTOG 9003, Fu (2000) Cairo 3, Awwad (2002) IGR, Lusinchi Стадия III/ IV ОГШ+н/гл II IV ОГШ+н/гл II IV ОГШ ОГШ ОГШ 2001 II- IV III/ IV III/ IV Режим фракциони рования Классический 67-72Гр/6,5нед. Классический 72Гр/5нед.сплит 66Гр/6,5нед. 54Гр/1,7нед. Кол-во фракций в день РОД Классический 1 81,6Гр/7нед. 2 67,2Гр/6нед.Сплит 2 72Гр/6нед Гр/6нед.постоп. 46,2Гр/2нед. постоп Гр 1,6Гр 2Гр 1,6Гр 2Гр 1,5Гр 2Гр 1,2Гр 1,6Гр 1,8Гр+1,5Гр 2Гр 1,4Гр Кол-во пациентов Медиана набл. (мес.) Ранние реакции % 67% % 55% 52% 59% % 16% (Gr 3+) Поздние реакции 14% 39% 4% 14% р= % 28% 27% 37% 13% 42% 70Гр/5нед. 3 0,9Гр % 77% (Gr 3+)

11 (2002) IGR,Dupuis (1996) ОГШ 1993 III/ IV ОГШ опухоли головы и шеи Н/гл носоглотка 62Гр/3нед. 2 1,75Гр 46-96% 48% ЗАКЛЮЧЕНИЕ Следует отметить, что на настоящем этапе развития исследований лучевая терапия в нестандартном режиме фракционирования не является принципиально новой. Доказано, что варианты такого лучевого лечения с высокой вероятностью предохраняют от появления локальных рецидивов и не оказывают отрицательного влияния на отдаленные результаты лечения . Список использованных источников: 1. Coutard, H. Röntgentherapie der Karzinome / H. Coutard // Strahlentherapie Vol. 58. P Withers, H.R. Biological basis for altered fractionation schemes / H.R. Withers // Cancer Vol. 55. P Wheldon, T.E. Mathematical models in cancer research / T.E. Wheldon // In: Mathematical models in cancer research. Ed. Adam Hilger. IOP Publishing Ltd. Bristol and Philadelphia p. 4. Клиническая радиобиология / С.П. Ярмоненко, [и др.] // М: Медицина с. 5. Fractionation in radiotherapy / J. Fowler, // ASTRO Nov c. 6. Fowler, J.F. Review article The linear-quadratic formula and progress in fractionated radiotherapy /J.F. Fowler // Brit. J. Radiol Vol. 62. P Withers, H.R. Biological basis for altered fractionation schemes /H.R. Withers // Cancer Vol. 55. P Fowler, J.F. The Radiobiology of brachytherapy / J.F. Fowler // in: Brachytherapy HDR and LDR. Ed. Martinez, Orton, Mould. Nucletron. Columbia P Denekamp, J. Cell kinetics and radiation biology / J. Denekamp // Int. J. Radiat. Biol Vol. 49. P

12 10. Importance of overall treatment time for the outcome of radiotherapy of advanced head and neck carcinoma: dependency on tumor differentiation / O. Hansen, // Radiother. Oncol Vol. 43. P Fowler, J.F. Fractionation and therapeutic gain / J.F. Fowler // in: The Biological Basis of Radiotherapy. ed. G. G. Steel, G. E. Adams and A. Horwich. Elsevier, Amsterdam P Fowler, J.F. How worthwhile are short schedules in radiotherapy? / J.F. Fowler // Radiother. Oncol Vol. 18. P Fowler, J.F. Non standard fractionation in radiotherapy (editorial) / J.F. Fowler // Int. J. Radiat. Oncol. Biol. Phys Vol. 10. P Fowler, J.F. Loss of local control with prolonged fractionation in radiotherapy / J.F. Fowler // In: International Congress of Radiation Oncology 1993 (ICRO"93). P Wheldon, T.E. Radiobiological rationale for the compensation of gaps in radiotherapy regimes by postgap acceleration of fractionation / T.E. Wheldon // Brit. J. Radiol Vol. 63. P Late effects of hyperfractionated radiotherapy for advanced head and neck cancer: longterm follow-up results of RTOG / Fu KK., // Int. J. Radiat. Oncol. Biol. Phys Vol. 32. P A radiation therapy oncology group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003 / Fu KK., // Int. J. Radiat. Oncol. Biol. Phys Vol. 48. P A radiation therapy oncology group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: preliminary results of RTOG 9003 / Fu KK., // Int. J. Radiat. Oncol. Biol. Phys Vol. 45, suppl. 3. P The EORTC randomised trial on three fractions per day and misonidasole (trial no) in advanced head and neck cancer: long-term results and side effects / W. van den Bogaert, // Radiother. Oncol Vol. 35. P Accelerated fractionation (AF) compared to conventional fractionation (CF) improves locoregional control in the radiotherapy of advanced head and neck cancer: results of the EORTC randomised trial / J.-C. Horiot, // Radiother. Oncol Vol. 44. P

13 21. Randomised multicentre trials of CHART vs conventional radiotherapy in head and neck and non-small-cell lung cancer: an interim report / M.I. Saunders, // Br. J. Cancer Vol. 73. P A randomised multicentre trial of CHART vs conventional radiotherapy in head and neck / M.I. Saunders, // Radiother. Oncol Vol. 44. P The CHART regimen and morbidity / S. Dische, // Acta Oncol Vol. 38, 2. P Accelerated hyperfractionation (AHF) is superior to conventional fractionation (CF) in the postoperative irradiation of locally advanced head & neck cancer (HNC): influence of proliferation / H.K. Awwad, // Br. J. Cancer Vol. 86, 4. P Accelerated radiation therapy in the treatment of very advanced and inoperable head and neck cancers / A. Lusinchi, // Int. J. Radiat. Oncol. Biol. Phys Vol. 29. P Radiothérapie accélérée: premiers résultats dans une série de carcinomes des voies aérodigestives supérieures localement très évolués / O. Dupuis, // Ann. Otolaryngol. Chir. Cervocofac Vol P A prospective randomized trial of hyperfractionated versus conventional once daily radiation for advanced squamous cell carcinomas of the pharynx and larynx / B.J. Cummings, // Radiother. Oncol Vol. 40. S A randomised trial of accelerated versus conventional radiotherapy in head and neck cancer / S.M. Jackson, // Radiother. Oncol Vol. 43. P Conventional radiotherapy as the primary treatment of squamous cell carcinoma (SCC) of the head and neck. A randomized multicenter study of 5 versus 6 fractions per week preliminary report from DAHANCA 6 and 7 trial / J. Overgaard, // Radiother. Oncol Vol. 40. S Holsti, L.R. Dose escalation in accelerated hyperfractionation for advanced head and neck cancer / Holsti L.R. // In: International Congress of Radiation Oncology (ICRO"93). P Fractionation in radiotherapy / L. Moonen, // Cancer Treat. Reviews Vol. 20. P Randomized clinical trial of accelerated 7 days per week fractionation in radiotherapy for head and neck cancer. Preliminary report on therapy toxicity / K. Skladowski, // Radiother. Oncol Vol. 40. S40.

14 33. Withers, H.R. The EORTC hyperfractionation trial / H.R. Withers // Radiother. Oncol Vol. 25. P Лечение больных местно-распространенными формами рака гортани с использованием режима динамического мультифракционирования дозы / Слобина Е.Л., [и др.] // Здравоохранение с Отдаленные результаты лечения больных местно-распространенным раком гортани с использованием облучения в режиме динамического мультифракционирования дозы / Слобина Е.Л., [и др.] // В сб.: Материалы III съезда онкологов и радиологов СНГ, Минск с. 350.


УДК 616.22+616.321+616.313+616.31]:616-006.6:615.28(476) ОБОСНОВАННОЕ ПЛАНИРОВАНИЕ ХИМИОЛУЧЕВОГО ЛЕЧЕНИЯ ПАЦИЕНТОВ С МЕСТНО-РАСПРОСТРАНЕННЫМ РАКОМ ПОЛОСТИ РТА, ЯЗЫКА, ГЛОТКИ И ГОРТАНИ Пархоменко Л. Б.

4 29 том 17 И.В. МИХАЙЛОВ 1, В.Н. БЕЛЯКОВСКИЙ 1, А.Н. ЛУД 2, А.К. АЛЬ-ЯХИРИ 1 ÎÒÄÀË ÍÍÛÅ ÐÅÇÓËÜÒÀÒÛ ÊÎÌÏËÅÊÑÍÎÃÎ ËÅ ÅÍÈß ÌÅÑÒÍÎÐÀÑÏÐÎÑÒÐÀÍ ÍÍÎÃÎ ÐÅÇÅÊÒÀÁÅËÜÍÎÃÎ ÐÀÊÀ ÆÅËÓÄÊÀ IV ÑÒÀÄÈÈ (T4N1-3M) Ñ ÏÐÈÌÅÍÅÍÈÅÌ

Возможности протонной терапии Клинические аспекты Черкашин М.А. 2017 Роберт Уилсон (1914 2000) Wilson, R.R. (1946), Radiological use of fast protons, Radiology, Vol. 47 Снижение лучевой нагрузки

Метрические исследования радиационно-химических реакций в различных эстрактах и их превращений в пострадиационный период. Сравнить данные по радиационной стабильности и по их изменениям в пострадиационный

УДК: 616.31+616.321]-006.6+615.849+615.28 Химиолучевая терапия больных раком слизистой оболочки полости рта и ротоглотки с использованием неравномерного дробления дневной дозы М.У. Раджапова, Ю.С. Мардынский,

УДК: 616.22-006.6-036.65: 615.28: 615.849.1 ПАЛЛИАТИВНОЕ ЛЕЧЕНИЕ БОЛЬНЫХ С НЕОПЕРАБЕЛЬНЫМ РЕЦИДИВНЫМ РАКОМ ГОРТАНИ В.А. Рожнов, В.Г. Андреев, И.А. Гулидов, В.А. Панкратов, В.В. Барышев, М.Е. Буякова,

ОНКОЛОГИЯ УДК (575.2) (04) ВОЗМОЖНОСТИ ЛУЧЕВОЙ ТЕРАПИИ В ЛЕЧЕНИИ НЕМЕЛКОКЛЕТОЧНОГО РАКА ЛЕГКОГО III СТАДИИ Б.С. Карыпбеков аспирант The results of patients treatment with nonsmall-cell

Клеппер Л.Я. Сравнительный анализ LQ модели и модели ELLIS при облучении кожи 29 СРАВНИТЕЛЬНЫЙ АНАЛИЗ LQ МОДЕЛИ И МОДЕЛИ ELLIS ПРИ ОБЛУЧЕНИИ КОЖИ Л.Я. Клеппер 1, В.М. Сотников 2, Т.В. Юрьева 3 1 Центральный

Клинические исследования УДК: 616.24-006.6-085.849.1-036.8 УСКОРЕННОЕ ГИПЕРФРАКЦИОНИРОВАНИЕ С НЕРАВНОМЕРНЫМ ДРОБЛЕНИЕМ ДНЕВНОЙ ДОЗЫ ПРИ ЛУЧЕВОМ И ХИМИОЛУЧЕВОМ ЛЕЧЕНИИ НЕОПЕРАБЕЛЬНОГО НЕМЕЛКОКЛЕТОЧНОГО

Отзыв официального оппонента, профессора, доктора медицинских наук Фагима Фанисовича Муфазалова на диссертационную работу Михайлова Алексея Валерьевича на тему: «Обоснование повторной лучевой терапии у

ЛАБОРАТОРНЫЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ исследования УДК: 615.849.12.015.3:319.86 АДАПТАЦИЯ ЛИНЕЙНО-КВАДРАТИЧНОЙ МОДЕЛИ ДЛЯ ПЛАНИРОВАНИЯ РЕЖИМОВ ОБЛУЧЕНИЯ В ДИСТАНЦИОННОЙ НЕЙТРОННОЙ ТЕРАПИИ В.А. Лисин 1,2, В.В.

С.В.Канаев, 2003 г. УДК 616.51/.53-006.04-085.849.12 НИИ онкологии им. проф. Н.Н.Петрова Минздрава РФ, Санкт-Петербург ЛУЧЕВАЯ ТЕРАПИЯ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ГОЛОВЫ И ШЕИ С.В.Канаев Лучевая терапия является

УДК:616-006.484-053-08:615.849.1 ВЫБОР РЕЖИМА ФРАКЦИОНИРОВАНИЯ ПРИ ЛЕЧЕНИИ ГЛИОМ ВЫСОКОЙ СТЕПЕНИ ЗЛОКАЧЕСТВЕННОСТИ (ЧАСТЬ 1): ВОЗРАСТ И СТЕПЕНЬ ЗЛОКАЧЕСТВЕННОСТИ ФГБУ «Российский научный центр рентгенорадиологии»

МНИОИ им. П.А. Герцена филиал ФГБУ НМИРЦ Минздрав РФ Потенцированная внутрипузырная химиотерапия улучшает результаты безрецидивной выживаемости у больных немышечно-инвазивным раком мочевого пузыря Б.Я.

4, 2008 Медицинские науки. Теоретическая и экспериментальная медицина УДК 615.273.3+614.84 И. Я. Моисеева, А. И. Зиновьев, И. Н. Кустикова, С. А. Филимонов ВЛИЯНИЕ ПРЕПАРАТА «ДИКАРБАМИН» НА ЛЕЙКОЦИТАРНЫЙ

В.А. Лисин. Оценка параметров линейно-квадратичной модели... 5 ОЦЕНКА ПАРАМЕТРОВ ЛИНЕЙНО-КВАДРАТИЧНОЙ МОДЕЛИ В НЕЙТРОННОЙ ТЕРАПИИ В.А. Лисин НИИ онкологии СО РАМН, Томск На основе линейно-квадратичной

Proton Journal 10/2016 Регулярные новости о протонной терапии Протонная лучевая терапия карциномы предстательной железы и её преимущества Радиотерапия является одним из основных методов лечения карциномы

УДК: 616.31+616.321]-006.6+615.28+615.849-06 Сравнительная оценка реакций слизистой оболочки при разнофракционной химиолучевой терапии рака полости рта и ротоглотки М.У. Раджапова, Ю.С. Мардынский, И.А.

ФГБНУ «Российский онкологический научный центр им. Н. Н. Блохина» НИИ Детской онкологии и гематологии И.В. Глеков, В.А. Григоренко, В.П. Белова, А.В. Яркина Конформная лучевая терапия в детской онкологии

Министерство образования Республики Беларусь Белорусский государственный университет Национальная академия наук Беларуси Институт биофизики и клеточной инженерии Белорусский республиканский фонд фундаментальных

УДК 616.22-006-08 В.В. СТРЕЖАК, Е.В. ЛУКАЧ СРАВНЕНИЕ ЭФФЕКТИВНОСТИ МЕТОД ЛЕЧЕНИЯ БОЛЬНЫ РАКОМ ГОРТАНИ ІІІ СТАДИИ (Т 3 N 0 M 0), ВПЕРВЫЕ ВЫЯВЛЕННЫ В 2007 ГОДУ В УКРАИНЕ ДУ «Институт отоларингологии проф.

Лучевая терапия при метастатическом поражении костей М.С.Салпагаров, П.Д.Панков, Н.Н.Яковлева ГБУЗ «ГКБ имени братьев Бахрушиных ДЗМ» Клинические аспекты Статистика метастазирования в кости в зависимости

Комплексное лечение опухолей орофарингеальной зоны Семин Д.Ю., Медведев В.С., Мардынский Ю.С., Гулидов И.А., Исаев П.А., Раджапова М.У., Дербугов Д.Н., Полькин В.В. ФГБУ МРНЦ Минздравсоцразвития России,

Применение гипофракционированных режимов лучевой терапии после органосохраняющих операций по поводу рака молочной железы I IIA стадий Ю.В. Ефимкина, И.А. Гладилина, М.И. Нечушкин Отделение радиохирургии

Л.Я. Клеппер и соавт. Модифицированная линейно-квадратичная модель... 5 МОДИФИЦИРОВАННАЯ ЛИНЕЙНО-КВАДРАТИЧНАЯ МОДЕЛЬ ДЛЯ ПЛАНИРОВАНИЯ ЛУЧЕВОЙ ТЕРАПИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ И ЕЕ ПРИМЕНЕНИЕ ДЛЯ АНАЛИЗА

ЧЕЛЯБИНСКИЙ ОБЛАСТНОЙ КЛИНИЧЕСКИЙ ОНКОЛОГИЧЕСКИЙ ДИСПАНСЕР ЛУЧЕВАЯ ТЕРАПИЯ В ЛЕЧЕНИИ МЕСТНОРАСПРОСТРАНЕННОГО НМРЛ ПРАКТИЧЕСКИЕ АСПЕКТЫ УЛЬЯНОВСК, 2012 АБСОЛЮТНОЕ ЧИСЛО ЗАБОЛЕВШИХ РАКОМ ЛЕГКИХ В ЧЕЛЯБИНСКОЙ

С.М.Иванов, 2008 г. ББК P569.433.1-50 ГУ РОНЦ им. Н.Н.Блохина РАМН, Москва ХИМИОЛУЧЕВАЯ ТЕРАПИЯ РАКА ПИЩЕВОДА С.М.Иванов Клинические исследования отечественных и зарубежных авторов подтверждают данные

Программа расчета TCP и NTCP для сравнения планов лучевой терапии: облучение простаты Васильев В.Н., Лысак Ю.В. Федеральное государственное бюджетное учреждение «Российский научный центр рентгенорадиологии»

АГАБЕКЯН Г. О., АЗИЗЯН Р. И., СТЕЛЬМАХ Д. К. AGABEKYAN G. O., AZIZYAN R. I., STELMAH D. K. Особенности тактики лечения первичномножественного плоскоклеточного рака верхних дыхательных и пищеварительных

Результаты лечения саркомы Юинга костей таза у детей. Опыт лечения 1997-2015 Нисиченко Д.В. Дзампаев А.З. Нисиченко О.А. Алиев М.Д. НИИ Детской онкологии и гематологии РОНЦ им Н.Н. Блохина РАМН 2016 Цель

БИОСТАТИСТИЧЕСКИЕ АСПЕКТЫ ПЛАНИРОВАНИЯ КЛИНИЧЕСКИХ ИССЛЕДОВАНИЙ (c) KeyStat Ltd. 1 БИОСТАТИСТИКА В КЛИНИЧЕСКИХ ИССЛЕДОВАНИЯХ Выбор и постановка исследовательского вопроса / Статистическая гипотеза Переменные

8 БЫСТРЫЕ НЕЙТРОНЫ, МэВ В ЛЕЧЕНИИ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ ОКОЛОУШНОЙ СЛЮННОЙ ЖЕЛЕЗЫ Л.И. Мусабаева, О.В. Грибова, Е.Л. Чойнзонов, В.А. Лисин ГУ НИИ онкологии Томского научного центра СО РАМН, Томск

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА В РЕЗИДЕНТУРУ ПО СПЕЦИАЛЬНОСТИ «ЛУЧЕВАЯ ТЕРАПИЯ» 2 этап 2017-2018 УЧЕБНЫЙ ГОД Алматы 2016 Страница 1 из 5 Программа вступительного экзамена в резидентуру по специальности

Клиническое значение мониторинга циркулирующих в крови опухолевых клеток при диссеминированном раке молочной железы Бжадуг Оксана Борисовна Отделение клинической фармакологии и химиотерапии РОНЦ им. Н.Н.

Информационное руководство по Cyberknife Лечение рака предстательной железы Информационное руководство по CyberKnife Лечение рака предстательной железы Как пациенту, которому недавно был поставлен диагноз

3 4 2 13 Возможность органосохраняющего лечения местных рецидивов рака молочной железы В.А. Уйманов, А.В. Триголосов, А.В. Петровский, М.И. Нечушкин, И.А. Гладилина, Н.Р. Молодикова, Д.Б. Маслянкин ФГБУ

УДК: 68.6006.6:65.8 Химиолучевая терапия местно-распространенного рака шейки матки (предварительные результаты) ГУ «Российский онкологический научный центр им. Н.Н.Блохина РАМН», г. Москва Проведен клинический

ОБЗОРЫ ЛИТЕРАТУРЫ doi: 10.17116/onkolog20165258-63 Нетрадиционные режимы лучевой терапии немелкоклеточного рака легкого Ю.А. РАГУЛИН, Д.В. ГОГОЛИН Медицинский радиологический научный центр им. А.Ф. Цыба

УДК 615.849.5:616.5-006.6 doi: 10.25298/2221-8785-2018-16-4-435-439 НЕПОСРЕДСТВЕННЫЕ И БЛИЖАЙШИЕ РЕЗУЛЬТАТЫ БРАХИТЕРАПИИ В РЕЖИМЕ ГИПОФРАКЦИОНИРОВАНИЯ ДОЗЫ И ОДНОКРАТНОГО ОБЛУЧЕНИЯ ПРИ РАКЕ КОЖИ I-II СТАДИИ

«СОГЛАСОВАНО» Заместитель Директора департамента науки и человеческих ресурсов Министерства здравоохранения и социального развития РК Сыздыкова А.А. 2016 г. «УТВЕРЖДАЮ» Директор РГП ПХВ Казахкого научно-исследовательского

ЛУЧЕВАЯ ТЕРАПИЯ ОПУХОЛЕЙ МОЛОЧНОЙ ЖЕЛЕЗЫ Рак молочной железы наиболее часто встречающаяся злокачественная опухоль. Рак молочной железы берет начало либо из слизистой оболочки молочных протоков (дуктальный

Современное состояние проблемы колоректального рака в Республике Беларусь КОХНЮК В.Т. ГУ РНПЦ ОНКОЛОГИИ И МЕДИЦИНСКОЙ РАДИОЛОГИИ им. Н.Н. Александрова IX СЪЕЗД ОНКОЛОГОВ И РАДИОЛОГОВ СТРАН СНГ И ЕВРАЗИИ

Брахитерапия местнораспространенного рака пищевода как компонент радикального лечения: преимущества и риски ЛИТВИНОВ Р. П., ЧЕРНЫХ М. В., НЕЧУШКИН М. И., ГЛАДИЛИНА И. А., КОЗЛОВ О. В. LITVINOV R. P., CHERNYKH

Н.Е. Конопля Лечение медуллобластомы у детей младше четырех лет Республиканский научно-практический центр детской онкологии и гематологии Минздрава РБ, Минск С выше 20% всех медуллобластом диагностируется

ФГБУ «РОНЦ им.н.н.блохина» Минздрава России Булычкин Петр Владиславович Гипофракционная лучевая терапия больных с рецидивами рака предстательной железы после радикальной простатэктомии 14.01.12 онкология

Пресс-релиз Пембролизумаб в первой линии терапии значительно увеличивает общую выживаемость у пациентов с рецидивирующим или метастатическим раком головы и шеи по сравнению с существующим стандартом лечения

Клинические исследования УДК: 616.24 006.6 036.8:615.849.1 Высокая суммарная доза облучения улучшает выживаемость больных локализованной формой мелкоклеточного рака легкого: результаты одноцентрового ретроспективного

РАК ВЛАГАЛИЩА ЭПИДЕМИОЛОГИЯ Первичный рак влагалища развивается редко и составляет 1 2% всех злокачественных опухолей женских половых органов. Вторичные (метастатические) опухоли влагалища наблюдают в

Н.В. Мановицкая 1, Г.Л. Бородина 2 ЭПИДЕМИОЛОГИЯ МУКОВИСЦИДОЗА У ВЗРОСЛЫХ В РЕСПУБЛИКЕ БЕЛАРУСЬ ГУ «РНПЦ пульмонологии и фтизиатрии», УО «Белорусский государственный медицинский университет» Анализ динамики

УДК: 618.19 006.6 036.65+615.849.12 ЭФФЕКТИВНОСТЬ НЕЙТРОННОЙ И НЕЙТРОННО-ФОТОННОЙ ТЕРАПИИ В КОМПЛЕКСНОМ ЛЕЧЕНИИ МЕСТНЫХ РЕЦИДИВОВ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ В.В. Великая, Л.И. Мусабаева, Ж.А. Жогина, В.А. Лисин

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ЛЕЧЕБНО-ДИАГНОСТИЧЕСКИЙ ЦЕНТР МЕЖДУНАРОДНОГО ИНСТИТУТА БИОЛОГИЧЕСКИХ СИСТЕМ ИМЕНИ СЕРГЕЯ БЕРЕЗИНА» МУЛЬТИПАРАМЕТРИЧЕСКИЕ МР КРИТЕРИИ В ОЦЕНКЕ ОПУХОЛЕВОГО ОТВЕТА

Н.В. Деньгина и соавт., 2012 г. ББК Р562,4-56 Ульяновский государственный университет, кафедра онкологии и лучевой диагностики; ГУЗ областной клинический онкологический диспансер, г.ульяновск «сколь много

ВЕТЛОВА Е. Р., ГОЛАНОВ А. В., БАНОВ С. М., ИЛЬЯЛОВ С. Р., МАРЯШЕВ С. А., ОСИНОВ И. К., КОСТЮЧЕНКО В. В. VETLOVA E. R., GOLANOV A. V., BANOV S. M., ILYALOV S. R., MARYASHEV S. A., OSINOV I. K., KOSTYUCHENKO

НЕПОСРЕДСТВЕННЫЕ РЕЗУЛЬТАТЫ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ НЕМЕЛКОКЛЕТОЧНОГО РАКА ЛГКОГО А.В. Черных Областная клиническая больница, г. Липецк, Россия Ключевые слова: рак лгкого, лечение, выживаемость. Хирургический

Лечение рака желудка одна из наиболее сложных проблем онкологии. Ограниченные возможности хирургического лечения, в особенности при III стадии заболевания, делают понятным стремление отечественных и зарубежных

Использование высокотехнологичной лучевой терапии в лечении рака предстательной железы Минайло И.И., Демешко П.Д., Артемова Н.А., Петкевич М.Н., Леусик Е.А. IX СЪЕЗД ОНКОЛОГОВ И РАДИОЛОГОВ СТРАН СНГ И

УДК 616.831-006.6:616-053]:616-08(476) ВАЛЕРИЙ ВАСИЛЬЕВИЧ СИНАЙКО ГУ «РНПЦ онкологии и медицинской радиологии им. Н. Н. Александрова», а/г Лесной, Минский район, Беларусь КОМБИНИРОВАННОЕ И КОМПЛЕКСНОЕ

30-35 УДК 616.62 006.6 039.75 085.849.1 ВОЗМОЖНОСТИ ЛУЧЕВОЙ ТЕРАПИИ В ПАЛЛИАТИВНОМ ЛЕЧЕНИИ БОЛЬНЫХ РАКОМ МОЧЕВОГО ПУЗЫРЯ Гуменецкая Ю.В., Мардынский Ю.С., Карякин О.Б. Медицинский радиологический научный

Гипофракционированные режимы лучевой терапии после органосохраняющих операций по поводу рака молочной железы I IIа стадий Ю.В. Ефимкина, И.А. Гладилина, М.И. Нечушкин, О.В. Козлов Отделение радиохирургии

Варианты лечения локорегионарных рецидивов плоскоклеточного рака слизистой оболочки полости рта и ротоглотки И.А. Задеренко 1, А.Ю. Дробышев 1, Р.И. Азизян 2, С.Б. Алиева 2, 3 1 Кафедра челюстно-лицевой

Клинические исследования УДК: 615.327.2 006.6+615.849+615.28 Сравнительная оценка химиолучевой терапии больных раком носоглотки в зависимости от режима фракционирования дозы и методик химиотерапии В.Г.

УДК: 616.24-006.6-059-089:616.42-089.87 ВЛИЯНИЕ ОБЪЕМА МЕДИАСТИНАЛЬНОЙ ЛИМФОДИССЕКЦИИ НА РЕЗУЛЬТАТЫ КОМБИНИРОВАННОГО ЛЕЧЕНИЯ НЕМЕЛКОКЛЕТОЧНОГО РАКА ЛЕГКОГО IIIA(N 2 СТАДИИ Е.О. Манцырев, А.В. Важенин,

АНАЛИЗ ДОЗНОГО РАСПРЕДЕЛЕНИЯ НА ОРГАНЫ РИСКА ПРИ КОНФОРМНОЙ ЛУЧЕВОЙ ТЕРАПИИ БОЛЬНЫХ ЛИМФОМОЙ ХОДЖКИНА II СТАДИИ С ПОРАЖЕНИЕМ СРЕДОСТЕНИЯ Иванова Е.И., 1 Виноградова Ю.Н., 1 Кузнецова Е.В., 1 Смирнова Е.В.,

1 УДК 61 УСЕНОВА АСЕЛЬ АБДУМОМУНОВНА Кандидат медицинских наук, доцент кафедры онкологии, КРСУ, г.бишкек, Кыргызстан МАКИМБЕТОВА ЧИНАРА ЭРМЕКОВНА Кандидат медицинских наук, доцент кафедры нормальной физиологии,

Лучевая терапия, как и хирургическое вмешательство, по существу является локальным методом лечения. В настоящее время лучевая терапия применяется в том или ином варианте более чем у 70% больных со злокачественными новообразованиями, подлежащих специальному лечению. Исходя из стратегических задач оказания помощи онкологическим больным лучевая терапия может быть использована:

  1. как самостоятельный или основной метод лечения;
  2. в комбинации с хирургическим вмешательством;
  3. в сочетании с химиогормонотерапией;
  4. в качестве мультимодальной терапии.

Лучевая терапия как основной или самостоятельный метод антибластомного лечения применяется в случаях:

  • когда она является предпочтительной либо в косметическом, либо в функциональном отношении, а отдаленные результаты ее одинаковы по сравнению с таковыми при применении других методов лечения онкологических больных;
  • когда она может быть единственно возможным средством помощи неоперабельным больным со злокачественными новообразованиями, для которых радикальным методом лечения является операция.

Лучевая терапия как самостоятельный метод лечения может быть проведена по радикальной программе, использована как паллиативное и симптоматическое средство помощи больным.

В зависимости от варианта распределения дозы излучения во времени различают режимы мелкого, или обычного, фракционирования (разовая очаговая доза — РОД — 1,8-2,0 Гр 5 раз в неделю), среднего (РОД — 3-4 Гр), крупного (РОД — 5 Гр и более) дробления дозы. Большой интерес представляют курсы лучевой терапии, предусматривающие дополнительное дробление на 2 (и более) фракции дневной дозы с интервалами между фракциями менее одних суток (мультифракционирование). Различают следующие разновидности мультифракционирования:

  • ускоренное (акселерированное) фракционирование — отличается меньшей длительностью курса лучевой терапии по сравнению с таковой при обычном фракционировании; при этом РОД остается стандартной или несколько ниже. Изоэффективная СОД снижается, при этом общее число фракций или равно таковому при обычном фракционировании, или уменьшается за счет того, что применяют 2-3 фракции ежедневно;
  • гиперфракционирование — увеличение количества фракций с одновременным значительным снижением РОД. Подводят 2-3 фракции и более в день при общем времени курса, равном таковому при обычном фракционировании. Изоэффективная СОД, как правило, повышается. Обычно используют 2-3 фракции в день с интервалом 3-6 ч;
  • варианты мультифракционирования, имеющие признаки как гиперфракционирования, так и ускоренного фракционирования, а иногда сочетающиеся с обычным фракционированием дозы.

В зависимости от наличия перерывов в облучении различают непрерывный (сквозной) курс лучевой терапии, при котором заданная поглощенная доза в мишени накапливается непрерывно; расщепленный курс облучения, состоящий из двух (или нескольких) укороченных курсов, разделенных продолжительными запланированными интервалами.

Динамический курс облучения — курс облучения с планируемым изменением схемы фракционирования и/или плана облучения больного.

Перспективным представляется проведение лучевой терапии с применением биологических средств изменения радиационного эффекта — радиомодифицирующих агентов. Под радиомодифицирующими агентами понимают физические и химические факторы, способные изменить (усилить или ослабить) радиочувствительность клеток, тканей и организма в целом.

Для усиления лучевого поражения опухолей применяется облучение на фоне гипербарической оксигенации (ГО) злокачественных клеток. Метод лучевой терапии, основанный на использовании ГО, получил название оксигенорадиотерапии, или оксибарорадиотерапии, — лучевой терапии опухолей в условиях, когда больной перед сеансом облучения и во время него находится в специальной барокамере, где создается повышенное давление кислорода (2-3 атм). Вследствие значительного повышения РО 2 в сыворотке крови (в 9-20 раз) увеличивается разница между РО 2 в капиллярах опухоли и ее клетках (кислородный градиент), усиливается диффузия 0 2 к опухолевым клеткам и соответственно повышается их радиочувствительность.

В практике лучевой терапии нашли применение препараты определенных классов — электронакцепторные соединения (ЭАС), способные повысить радиочувствительность гипоксичных клеток и не влияющие на степень радиационного повреждения нормальных оксигенированных клеток. В последние годы ведутся исследования, направленные на поиск новых высокоэффективных и хорошо переносимых ЭАС, которые будут способствовать широкому внедрению их в клиническую практику.

Для усиления действия радиации на опухолевые клетки используются также малые «сенсибилизирующие» дозы радиации (0,1 Гр, подводимые за 3-5 мин до облучения основной дозой), термические воздействия (терморадиотерапия), которые хорошо зарекомендовали себя в ситуациях, достаточно сложных для традиционной лучевой терапии (рак легкого, гортани, молочной железы, прямой кишки, меланома и др.).

Для защиты нормальных тканей от радиации применяется гипоксическая гипоксия — вдыхание газовых гипоксических смесей, содержащих 10 или 8% кислорода (ГГС-10, ГГС-8). Облучение больных, проводимое в условиях гипоксической гипоксии, получило название гипоксирадиотерапии. При использовании газовых гипоксических смесей уменьшается выраженность лучевых реакций кожи, костного мозга, кишечника, что обусловлено, согласно экспериментальным данным, лучшей защитой от радиации хорошо оксигенированных нормальных клеток.

Фармакологическая противолучевая защита обеспечивается применением радиопротекторов, наиболее эффективные из которых относятся к двум большим классам соединений: индолилалкиламинам (серотонин, миксамин), меркаптоалкиламинам (цистамин, гаммафос). Механизм действия индолилалкиламинов связан с кислородным эффектом, а именно с созданием тканевой гипоксии, возникающей из-за вызванного спазма периферических сосудов. Меркаптоалкиламинам присущ клеточно-концентрационный механизм действия.

Важную роль в радиочувствительности биологических тканей играют биоантиокислители. Применение антиоксидантного комплекса витаминов А, С, Е позволяет ослабить лучевые реакции нормальных тканей, благодаря чему открывается возможность применения интенсивно-концентрированного предоперационного облучения в канцерицидных дозах малочувствительных к радиации опухолей (рак желудка, поджелудочной железы, толстой кишки), а также использования агрессивных схем полихимиотерапии.

Для облучения злокачественных опухолей применяют корпускулярное (бета-частицы, нейтроны, протоны, пи-минус-мезоны) и фотонное (рентгеновское, гамма-) излучения. В качестве источников излучения могут быть использованы естественные и искусственные радиоактивные вещества, ускорители элементарных частиц. В клинической практике применяются преимущественно искусственные радиоактивные изотопы, получаемые в атомных реакторах, генераторах, на ускорителях и выгодно отличающиеся от естественных радиоактивных элементов монохроматичностью спектра испускаемого излучения, высокой удельной активностью и дешевизной. В лучевой терапии используются следующие радиоактивные изотопы: радиоактивный кобальт — 60 Со, цезий — 137 Cs, иридий — 192 Iг, тантал — 182 Та, стронций — 90 Sr, таллий — 204 Тl, прометий — 147 Рm, изотопы йода — 131 I, 125 I, 132 I, фосфор — 32 Р и др. В современных отечественных гамма-терапевтических установках источником излучения является 60 Со, в аппаратах для контактной лучевой терапии — 60 Со, 137 Cs, 192 Ir.

Различные виды ионизирующих излучений в зависимости от их физических свойств и особенностей взаимодействия с облучаемой средой создают в организме характерное дозное распределение. Геометрическое распределение дозы и плотность создаваемой в тканях ионизации в конечном счете определяют относительную биологическую эффективность излучений. Этими факторами руководствуются в клинике при выборе вида излучения для облучения конкретных опухолей. Так, в современных условиях для облучения поверхностно расположенных небольших опухолей широкое применение находит короткофокусная (близкодистанционная) рентгенотерапия. Генерируемое трубкой при напряжении 60-90 кВ рентгеновское излучение полностью поглощается на поверхности тела. Вместе с тем дальнедистанционная (глубокая) рентгенотерапия в настоящее время в онкологической практике не применяется, что связано с неблагоприятным дозным распределением ортовольтного рентгеновского излучения (максимальная лучевая нагрузка на кожу, неравномерное поглощение излучения в тканях различной плотности, выраженное боковое рассеивание, быстрый спад дозы по глубине, высокая интегральная доза).

Гамма-излучение радиоактивного кобальта имеет более высокую энергию излучения (1,25 МэВ), что обусловливает более выгодное пространственное распределение дозы в тканях: максимум дозы смещается на глубину 5 мм, вследствие чего уменьшается лучевая нагрузка на кожу, менее резко выражены различия в поглощении излучения в различных тканях, более низкая интегральная доза по сравнению с ортовольтной рентгенотерапией. Большая проникающая способность данного вида излучения позволяет широко использовать дистанционную гамма-терапию для облучения глубокорасположенных новообразований.

Генерируемое ускорителями высокоэнергетическое тормозное излучение получается в результате торможения быстрых электронов в поле ядер мишени, изготовленной из золота или платины. Ввиду большой проникающей способности тормозного излучения максимум дозы смещается в глубину тканей, расположение его зависит от энергии излучения, при этом имеет место медленный спад глубинных доз. Лучевая нагрузка на кожу входного поля незначительна, но при увеличении энергии излучения может возрастать доза на кожу выходного поля. Больные хорошо переносят облучение высокоэнергетичным тормозным излучением из-за незначительного рассеивания его в теле и низкой интегральной дозы. Тормозное излучение высоких энергий (20-25 МэВ) целесообразно использовать для облучения глубокорасположенных патологических очагов (рак легкого, пищевода, матки, прямой кишки и др.).

Быстрые электроны, генерируемые ускорителями, создают в тканях дозное поле, отличающееся от дозных полей при воздействии другими видами ионизирующих излучений. Максимум дозы наблюдается непосредственно под поверхностью, глубина нахождения максимума дозы в среднем составляет половину или треть величины эффективной энергии электронов и возрастает с увеличением энергии излучения. В конце траектории движения электронов величина дозы резко падает до нуля. Однако кривая падения величины дозы с возрастанием энергии электронов становится все более плоской за счет фонового излучения. Электроны с энергией до 5 МэВ используются для облучения поверхностных новообразований, с более высокой энергией (7-15 МэВ) — для воздействия на опухоли средней глубины расположения.

Распределение дозы излучения протонного пучка характеризуется созданием максимума ионизации в конце пробега частиц (пик Брегга) и резким падением дозы до нуля за пределами пика Брегга. Такое распределение дозы протонного излучения в тканях обусловило применение его для облучения опухолей гипофиза.

Для лучевой терапии злокачественных новообразований могут быть использованы нейтроны, относящиеся к плотноионизирующим излучениям. Нейтронная терапия проводится дистанционными пучками, получаемыми на ускорителях, а также в виде контактного облучения на шланговых аппаратах с зарядом радиоактивного калифорния 252 Cf. Нейтронам свойственна высокая относительная биологическая эффективность (ОБЭ). Результаты использования нейтронов в меньшей степени зависят от кислородного эффекта, фазы клеточного цикла, режима фракционирования дозы по сравнению с применением традиционных видов излучения, в связи с чем их можно использовать для лечения рецидивов радиорезистентных опухолей.

Ускорители элементарных частиц являются универсальными источниками излучения, позволяющими произвольно выбирать вид излучения (электронные пучки, фотоны, протоны, нейтроны), регулировать энергию излучения, а также размеры и формы полей облучения с помощью специальных многопластинчатых фильтров и тем самым индивидуализировать программу радикальной лучевой терапии опухолей различных локализаций.

Дробное, или фракционированное облучение – один из основных методов наружного дистанционного облучения, причем применяется:

а) мелкое фракционирование 2 - 2,5 Гр (недельная 10-12 Гр),

б) среднее фракционирование 3 - 4 Гр и

в) крупное 5 Гр и более – разовая дневная доза.

К 40 - м годам стало общепринятым облучение опухолей 5 раз в неделю по 2 Гр в день. Такой курс, состоящий из 30 фракций по 2 Гр, широко используется в современной радикальной лучевой терапии и обозначается как “стандартный”.

Сплит-курс. Расщепленный, или, используя английский термин, ”сплит”, курс отличается от “стандартного” наличием в середине 2-3 недельного перерыва в облучении. Он был предложен с целью снижения интенсивности острых лучевых реакций, которые при лечении опухолей некоторых локализаций (например, головы и шеи) не позволяют подводить требуемую дозу. Сплит-курс сохраняет свою ценность при лечении ослабленных пожилых больных или тех локализаций опухоли (например, полости рта), когда острые лучевые реакции препятствуют проведению непрерывного курса облучения.

Гипофракционирование, т.е. использование небольшого количества крупных фракций. Обычным видом гипофракционирования является режим крупнофракционного облучения, который включает несколько фракций по 5-6, реже до 10 Гр, подводимых с интервалом в 5-7 дней до суммарной дозы в 30-45 Гр. Курс лечения – 3-9 недель. Облучение в этом режиме способствует быстрой остановке роста опухоли, хорошо переносится больными и очень удобно для амбулаторной лучевой терапии. В режиме гипофракционирования традиционно проводится облучение метастазов в кости. За счет использования 2-3 фракций по 6-8 Гр достигается быстрый анальгезирующий эффект. Этот режим удобен и для использования с различными модификаторами. Если схемы гипофракционирования, в основном, направлены для создания более удобных условий для облучения больных и при этом получение такого же результата, что и от «стандартного» режима, то режимы мультифракционирования имеют целью улучшение результативности лечения, под которым понимают, как увеличение процента излеченности опухолей, так и снижение числа лучевых осложнений. К обоснованию схем мультифракционирования клиническая радиобиология привлечена в наибольшей мере.

Мультифракционированием обычно принято обозначать режим лучевой терапии с проведением в день 2, иногда 3 сеансов облучения. Для обозначения различных вариантов мультифракционирования используются такие термины, как гиперфракционирование, ускоренное фракционирование.

Гиперфракционирование. Сейчас в качестве предпосылки использования гиперфракционирования рассматривается более высокий репарационный потенциал медленно пролиферирующих, поздно реагирующих тканей, по сравнению с быстро пролиферирующими, к которым относят и опухоли. При росте числа фракций в большей мере ослабляются лучевые реакции медленно пролиферирующих, поздно реагирующих тканей. Соответствующее снижение эффективности воздействия на опухоли компенсируется увеличением дозы, а сопутствующее усиление ранних лучевых реакций рассматривается как не представляющее угрозы для жизни и в значительной мере нивелируемое при лучшем уходе за больными. Гиперфракционирование, соответственно, должно использоваться при лечении опухолей таких локализаций, когда фактором, лимитирующим увеличение дозы, являются поздние лучевые поражения. Интервал между фракциями, согласно данным экспериментальных исследований, для полной репарации должен составлять не менее 6 часов. Расчеты показывают, что разделение ежедневной дозы в 2 Гр на 2 фракции по 1 Гр даст возрастание толерантного уровня поздно реагирующих тканей на 15-25%, в то время, как для компенсации снижения эффективности поражения опухолей потребуется всего лишь 10% повышение дозы. Разница между этими величинами и составляет выигрыш от применения гиперфракционирования.

Так, гиперфракционирование использовалось в рандомизированном клиническом исследовании лечения рака ротоглотки (I.C.Horiot и соавт., 1984). Результаты показали, что лечение 70 × 1,15 Гр (две фракции по 1,15 Гр с интервалом 4-6 ч, суммарная доза 80,5 Гр) вызвало примерно такое же количество поздних лучевых повреждений, как и схема 35 × 2 Гр (70 Гр за 7 недель). Однако большая суммарная доза при гиперфракционировании вызвала увеличение на 19% частоты местной излеченности опухоли.

Во многих случаях гиперфракционирование сочетается с элементами ускоренного фракционирования. Этот режим облучения предназначен для лечения опухолей с высокой скоростью деления клеток, когда сокращение курса способно уменьшить отрицательную роль репопуляции. К числу опухолей с высокой скоростью роста относятся, например, злокачественные лимфомы и ряд опухолей головы и шеи, рост которых, несмотря на высокую радиочувствительность клеток, у отдельных больных продолжается даже во время лучевой терапии с ежедневным облучением в дозе 2 Гр. При использовании этого метода однако возникает значительный рост ранних лучевых реакций. Особое внимание специалистов привлекает так называемое непрерывное ускоренное гиперфракционированное облучения (НУГО) опухолей головы и шеи и карциномы легких. Облучение проводится 3 раза в день по 1,5 Гр с 6 часовым интервалом в течение 12 дней без перерыва до СОД 54 Гр. В этих условиях большая ежедневная доза и отсутствие перерыва (даже в выходные дни) должны способствовать усилению поражения опухолей. При гораздо лучших результатах лечения опухолей после НУГО, по сравнению с историческим контролем, отдаленные лучевые поражения были менее тяжелыми. Заканчивая рассмотрение ускоренного фракционирования, упомянем об его использовании для сокращения длительного лечения, что бывает важным при паллиативном облучении больных.

Динамическое фракционирование. Этим термином обозначают режимы с меняющейся в течение курса величиной проводимой фракции.

Определение толерантных доз при различных режимах фракционирования. Важнейшим условием успешной лучевой терапии является сохранение жизнеспособности нормальных тканей и органов, находящихся в зоне воздействия радиации. Это относится не только к окружающим опухоль анатомическим структурам, но и к самой “мишени”, подвергающейся наиболее интенсивному облучению. Кроме элементов опухоли, в ней содержатся сосуды и другие соединительнотканные образования, от регенераторной способности которых зависит дальнейшее течение заболевания. Даже при полном уничтожении всех клеток опухоли исход заболевания будет неблагоприятный, если превышается толерантность нормальных тканей. Наступающие при этом лучевые поражения протекают не менее тяжело, чем основное заболевание.

Наибольшее распространение получил режим классического фракционирова­ния. Опухоль облучают в дозе 1,8-2 Гр 5 раз в неделю до суммарной очаговой дозы в течение 1,5 месяцев. Режим применим для опухолей, обладающих вы­сокой и умеренной радиочувствительностью.

Нетрадиционные режимы фракционирования дозы представляют собой один из самых привлекательных способов радиомодификации. При адекват­но подобранном варианте фракционирования дозы удается добиться суще­ственного повышения повреждений опухоли с одновременной защитой окру­жающих здоровых тканей.

При крупном фракционировании ежедневную дозу увеличивают до 4-5 Гр, а облучение выполняют 3-5 раз в неделю. Такой режим предпочтительнее для радиорезистентных опухолей, однако при этом чаще наблюдаются лучевые ос­ложнения.

С целью повышения эффективности лечения быстро пролиферирующих опухолей применяют мулыпифракционирование: облучение в дозе 2 Гр про­водят 2 раза в день с интервалом не менее 4-5 ч. Суммарная доза уменьшает­ся на 10-15 % . Гипоксические опухолевые клетки не успевают восстановить­ся после сублетальных повреждений. При медленно растущих новообразовани­ях используют режим гиперфракционирования, т. е. увеличения количества фракций - ежедневную дозу облучения 2,4 Гр разбивают на 2 фракции по 1,2 Гр. Несмотря на увеличение суммарной дозы на 15-20 %, лучевые реакции не выражены.

Динамическое фракционирование - режим дробления дозы, при котором проведение укрупненных фракций чередуется с классическим фракционирова­нием. Усиление радиопоражаемости опухоли достигается за счет увеличения суммарных очаговых доз без усиления лучевых реакций нормальных тканей.

Особым вариантом является так называемый расщепленный курс облуче­ния, или «сплит»-курс. После подведения суммарной очаговой дозы (около 30 Гр) делают перерыв на 2-3 недели. За это время клетки здоровых тканей восстанавливаются лучше, чем опухолевые. Кроме того, в связи с уменьше­нием размеров опухоли, оксигенация ее клеток повышается.

Следующим методом лучевой терапии по способу распределения дозы во времени является непрерывный режим облучения в течение нескольких дней.Примером этого метода является внутритканевая лучевая терапия, когда в опу­холь имплантируют радиоактивные источники. Достоинством такого режима является воздействие излучения на все стадии клеточного цикла, наибольшее количество раковых клеток подвергается облучению в фазе митоза, когда они наиболее радиочувствительны.

Одномоментная лучевая терапия - суммарная очаговая доза подводится за один сеанс облучения. Примером является методика интраоперационного облучения, когда суммарная однократная доза на ложе опухоли и зоны регио­нарного метастазирования составляет 15-20 Гр.

Основные принципы лучевой терапии злокачественных опухолей:

1. Подведение оптимальной дозы к опухоли для ее разрушения при мини­
мальном повреждении окружающих опухоль здоровых тканей.

2. Своевременное применение лучевой терапии в наиболее ранних стадиях
злокачественного процесса.

3. Одновременное лучевое воздействие на первичную опухоль и пути регио­
нарного метастазирования.

4. Первый курс лучевой терапии должен быть, по возможности, радикаль­
ным и единовременным.

5. Комплексность лечения больного, т. е. использование наряду с лучевой
терапией средств, направленных на улучшение результатов лечения, а
также на предотвращение лучевых осложнений.

Показание для проведения лучевой терапии - точно установленный кли­нический диагноз с морфологическим подтверждением. Исключение составля­ет только ургентная клиническая ситуация: поражение средостения с синдро­мом сдавления верхней полой вены либо трахеи, лучевая терапия проводится по жизненным показаниям.

Лучевая терапия противопоказана при очень тяжелом состоянии больного, кахексии, анемии и лейкопении, не поддающихся коррекции, острых септичес­ких состояниях, декомпенсированных поражениях сердечно-сосудистой систе­мы, печени, почек, при активном туберкулезе легких, распаде опухоли (угроза кровотечения), распространении опухоли на соседние полые органы и прорас­тании опухолью крупных сосудов.

Одним из условий успеха лучевой терапии является тщательно составленный индивидуальный план облучения, включающий определение объема облучения, локализации опухоли, уровней поглощенных доз в зоне опухоли и регионарного метастазирования. Планирование лучевой терапии включает клиническую топометрию, дозиметрию и последующий контроль за воспроизведением намеченно­го плана лечения от сеанса к сеансу.