Безопасная мощность лазера 5 м в. Что лечат инфракрасными лучами? Инфракрасное излучение: естественные и искусственные источники

Ещё в древние века жители планеты знали о благотворной силе тепла, или, если говорить научным языком, об инфракрасном излучение. Инфракрасное излучение представляет собой часть спектра излучения солнца. Человек ощущает это излучение, чувствуя тепло, но не видит его. Такие лучи полностью безопасны для человека, поэтому стоит их отличать от опасных рентгеновских, СВЧ или ультрафиолетовых. Пример естественного источника инфракрасных лучей – это Солнце, искусственных – русская печь. Поэтому каждый житель планеты, регулярно ощущает на себе их благотворное действие, особенно летом.

Ряд научных лабораторий США провели исследования воздействия дальнего инфракрасного излучения на организм человека. И вот что они выяснили: при воздействии инфракрасного излучения на организм, в нём:

Подавляется рост раковых клеток;

Уничтожаются некоторые виды вируса гепатита;

Нейтрализуется пагубное воздействие электромагнитных полей;

Излечивается дистрофия;

У больных диабетом повышается количество вырабатываемого инсулина;

Нейтрализуются последствия радиоактивного излучения;

Значительное улучшение, или, даже, излечение псориаза;

Обращение цирроза печени.

Тело человека нуждается в регулярной подпитке длинноволновым теплом. Организм начинает болеть, если такая подпитка отсутствует. Наверное, все замечали, как появляется прилив сил после пребывания на солнышке или после посиделок у костра. Только, ведь таких возможностей у человека может и не быть, особенно если он проживает в крупном мегаполисе. Вот тогда и выручат этого человека инфракрасные излучатели , которые он сам же и создал. В мире, на сегодняшний день, существует более десяти различных приборов, под общим характеризующим названием инфракрасные излучатели . Это и инфракрасные лампы, и инфракрасная одежда, и инфракрасные матрасы, и инфракрасные сауны, и др.

Инфракрасные излучатели и их благотворное лечебное воздействие на организм человека

Огромным достоинством дальнего инфракрасного излучения является то, что при его воздействии, устраняется не только симптомы болезни, но и её причины.

Многие наши современные болезни вытекают из неблагоприятной окружающей среды. Накопление всевозможных ядов в организме приводит к тому, что многие люди живут с постоянной болью, чувством истощения, усталости и подавленности. Практически у каждого человека можно обнаружить в организме наличие пестицидов, тяжёлых металлов, продуктов сгорания топлива и других вредных соединений.

Недавние исследования доказали, что, при воздействии на организм человека инфракрасных лучей, происходит стимулирование клеток на вывод из организма через мочу и пот ядовитых веществ, в том числе, ртути и свинца. А ведь очищение от токсинов – это несомненное условие предотвращения многих болезней. Если совместить лечение инфракрасным излучением со здоровым питанием, диетами и голоданием, то такая система лечения представит собой широкий спектр проверенных возможностей, выходящих за рамки обычной традиционной медицины.

Регулярный приём инфракрасных процедур поможет при следующих заболеваниях:

Нарушение сердечнососудистой деятельности, за счёт уменьшения уровня холестерина в крови, и снижения высокого давления;

Варикозное расширение вен;

Нарушение циркуляции крови. При воздействии инфракрасного излучения происходит расширение сосудов, стимулируется улучшение циркуляции крови;

Происходит устранение артрических болей, судорог, менструальных болей, ревматизма, радикулита;

Инфракрасные лучи сдерживают процесс размножения вирусов, что, при регулярных сеансах, позволит избежать простудные заболевания, или значительно ускорить процесс выздоровления;

Помогает бороться с проблемами избыточного веса и целлюлитом;

Помогает уменьшить боль при ожогах, одновременно ускоряя процесс создания новой кожи;

Успокаивается нервная система;

Стабилизируется работа иммунной системы;

Происходит устранение ряда нарушений пищеварительной системы.


Здоровья Вам и вашим близким!

Лазер очень опасная штука. Ткани и органы, которые обычно подвержены лазерному облучению это глаза и кожа. Существуют три основных типа повреждения тканей, вызванных лазерным облучением. Это тепловые эффекты, фотохимическое воздействие, а также акустические переходные эффекты (подвержены только глаза).

  • Тепловые эффекты могут возникать при любой длине волны и являются следствием излучения или светового воздействия на охлаждающий потенциал кровотока тканей.
  • В воздухе, фотохимический эффекты происходят между 200 и 400 нм и ультрафиолете, а также между 400 до 470 нм фиолетовых длинах волн. Фотохимические эффекты связанны с продолжительностью и также частотой повторения излучения.
  • Акустические переходные эффекты, связанные с длительностью импульса, могут произойти в короткий срок импульсов (до 1 мс) в зависимости от конкретной длины волны лазера. Акустическое воздействие переходных эффектов плохо изучено, но оно может вызвать повреждение сетчатки, которая отлична от термической травмы сетчатки.

Потенциальный вред глазу

Потенциальные места повреждения глаза (см. рис 1) напрямую связаны с длиной волны лазерного излучения. Воздействие лазерного излучения на глаз:

  • Длины волн короче 300 нм или более 1400 нм, воздействуют на роговицу
  • Длины волн между 300 и 400 нм, воздействуют на водянистую влагу, радужную оболочку глаза, хрусталик и стекловидное тело.
  • Длины волн от 400 нм и 1400 нм, направлены на сетчатку.

ПРИМЕЧАНИЕ: Вред лазера для сетчатки может быть очень большим из-за фокусного усиления (оптического усиления) от глаз, что составляет примерно 105. Это означает, что излучение от 1 мВт/см2 через глаз будет эффективно увеличено до 100 мВт/см2, когда оно достигает сетчатки.

При термических ожогах глаза нарушается охлаждающая функция сосудов сетчатки глаза. В результате повреждающего воздействия термического фактора могут происходить кровоизлияния в стекловидное тело в следствии повреждения кровеносных сосудов.

Хотя сетчатка может восстановиться от незначительных повреждений, основные ранения жёлтого пятна сетчатки может привести к временной или постоянной потере остроты зрения или к полной слепоте. Фотохимические ранения роговицы путем ультрафиолетового облучения может привести к photokeratoconjunctivitis (часто называют болезнью сварщиков или снежной слепотой). Это болезненные состояния могут длиться несколько дней с очень изнуряющими болями. Долгосрочный ультрафиолетовое облучение может привести к формированию катаракты.

Продолжительность воздействия также влияет на травматизацию глаза. Например, если лазер видимых длин волн (400 до 700 нм), мощность луча которого составляет менее 1,0 МВт, а время экспозиции составляет менее 0,25 секунд (время за которое человек закроет глаз), никаких повреждений на сетчатке глаза не будет. Класс 1, 2А и 2-лазеров подпадают под эту категорию и, как правило, не могут навредить сетчатке. К сожалению, при прямом или отраженном попадании лазера класса 3A, 3B, или 4, и диффузных отражений лазеров выше 4 класса могут вызывать повреждения, прежде чем человек сможет рефлекторно закрыть глаза.

Для импульсных лазеров, длительности импульса также влияет на потенциальный вред для глаз. Импульсы менее чем на 1 мс при попадании на сетчатку может вызвать акустические переходные эффекты, что приводит к существенному ущербу и кровотечениям в дополнение к ожидаемым тепловым повреждениям. Многие импульсные лазеров в настоящее время имеют время импульса менее 1 пикосекунды.

Стандарт ANSI определяет максимально допустимую мощность(МДМ) воздействия лазера на глаз без каких либо последствий (под воздействием конкретных условий). Если МДМ превышена, то вероятность повреждения глаз резко возрастает.

Первое правило лазерной безопасности: НИКОГДА НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ НЕ СМОТРИТЕ ГЛАЗАМИ НА ЛАЗЕРНЫЙ ЛУЧ!

Если вы сможете предотвратить попадание лазерного луча и его отражений в глаз, вы сможете избежать болезненные и, возможно, ослепляющее травмы.
Потенциальный вред коже.

Травмы кожы от лазеров в первую очередь, делятся на две категории: тепловые травмы (ожоги) от острого воздействия мощных лазерных лучей и фотохимического индуцированного повреждения от хронического воздействия рассеянного ультрафиолетового лазерного излучения.

  • Тепловой травмы могут возникнуть в результате прямого контакта с лучом или его зеркальным отражением. Эти травмы хоть и болезненны но, как правило, не являются серьезными и, обычно, легко предотвращаются при надлежащем контроле над лазерным лучом.
  • Фотохимические повреждения могут произойти с течением времени от ультрафиолетового облучения прямого света, зеркальных отражений, или даже диффузного отражения.

Эффект может быть незначительными но могут быть и серьезные ожоги, а длительное воздействие может способствовать формированию рака кожи. Хорошие защитные очки и одежда могут быть необходимы для защиты кожи и глаз.

Безопасность при работе с лазером

При работе с лазерами необходимо иметь очки, защищающие от лазерного излучения. Неужели эти специальные очки на самом деле так нужны? Многие начинающие лазеростроители и покупатели лазерных указок задаются таким вопросом. Да, защитные очки нужны даже для лазера 15мВт, так как без них глаза сильно устают. Очки стоят около 1600 рублей за штуку, но я думаю вы понимаете, что ваши глаза стоят намного дороже, чем вы заплатите за очки. Для защиты глаз нельзя использовать солнцезащитные очки!

То же самое будет с вашими глазами…
Степень защиты очков от лазерного излучение измеряется в OD. Что обозначает OD? OD значит Optical Density – оптическая плотность. Оптическая плотность показывает, во сколько раз очки ослабляют свет. Единица означает «в 10 раз». Соответственно, «оптическая плотность 3» означает ослабление в 1000 раз, а 6 - в миллион. Правильная оптическая плотность для видимого лазера такова, чтобы после очков от прямого попадания лазера осталась мощность, соответствующая классу II (максимум где-то 1 мВт). Для невидимого - чем больше, тем лучше.
От красного и некоторых инфракрасных лазеров защищают отечественные очки марки ЗН-22 С3-С22. Они похожи на очки сварщика, но имеют стекла голубого цвета. Купить их иногда можно в магазинах «Медтехника», стоят около 700 рублей. Недостаток — они резиновые, тяжелые и некрасивые. Если повезет, можно купить и другие отечественные очки от лазеров. Но в продаже они бывают редко.
На нашем сайте в разделе ссылки вы можете найти много адресов магазинов торгующих лазерными принадлежностями включая защитные очки.

Когда лазеры только стали появляться в лабораториях, как сами приборы, так и их приложения были настолько специальными, что вопрос о безопасности работы с лазерными излучателями вставал перед весьма ограниченным кругом исследователей и инженеров и не был предметом общего обсуждения. Сейчас, когда использование лазеров в научных лабораториях и промышленных предприятиях стало обычным делом, а применение лазеров в повседневной жизни значительно расширилось, исследователи просто обязаны решить вопрос о безопасности работы с этими устройствами. Лазеры стали неотъемлемым компонентом многих современных методов оптической микроскопии, и, в составе сложных оптических систем, они могут представлять серьезную угрозу при несоблюдении мер безопасности.

Рис.1. Анатомия человеческого глаза

Две главных составляющих опасности при работе с лазерными источниками - это облучение лазерным лучом и поражение током, связанное с высокими напряжениями в самом лазере и в источнике питания. Хотя смертельные случаи в результате облучения лазерным лучом неизвестны, есть несколько примеров смертельных исходов при контакте с компонентами лазера под высоким напряжением. Лучи достаточно высокой мощности могут вызвать ожоги кожи или, в некоторых случаях, привести к возгоранию или повреждению каких-либо материалов, но главной опасностью лазерного луча является возможность повреждения глаз, как наиболее чувствительного к свету органа. Многими государственными и другими организациями разработаны стандарты безопасности при работе с лазерами; некоторые из них носят обязательный, а некоторые рекомендательный характер. Большинство требований стандартов безопасности, закрепленных законом, относится к производителям лазеров, хотя конечный потребитель должен быть больше всех заинтересован в безопасной работе - предупреждении возможных повреждений или даже смерти.

Вред глазу может быть нанесен мгновенно, поэтому, чтобы минимизировать риск, меры предосторожности необходимо принимать заранее, так как в последний момент может быть уже поздно. Лазерное излучение подобно солнечному свету в том смысле, что оно тоже падает на глаз параллельными лучами, которые очень эффективно фокусируются на сетчатке, внутренней оболочке глаза, чувствительной к свету. На рисунке 1 представлено общее анатомическое строение человеческого глаза, с выделением структур особенно чувствительных к интенсивному излучению. Потенциальная опасность для глаз зависит от длины волны лазерного излучения, интенсивности пучка, расстоянию от излучателя до глаза и мощности лазера (как среднего значения мощности при непрерывной генерации импульсов, так и пиковой мощности при импульсном излучении). Длина волны имеет очень большое значение, потому что только излучение в диапазоне приблизительно от 400 до 1400 нанометров может попасть в гла и значительно повредить сетчатку. Свет в ближнем УФ-диапазоне может повредить слои, близкие к поверхности глаза, и привести к развитию катаракты, особенно у молодых людей, глазная ткань которых более прозрачна для света этих длин волн. Свет ближней ИК-области также может повредить поверхность глаза, хотя и с более высоким порогом повреждения (лучевой стойкости), чем ультрафиолет.

Реакция человеческого глаза на разные длины волн не одинакова и это определяет, наряду с другими факторами, описанными ниже, потенциальный вред глазу. Воздействие импульсных лазеров отличается от воздействия лазеров с непрерывным излучением. На практике, лазеры, работающие в импульсном режиме, имеют большую мощность, и единичный микросекундный импульс достаточной мощности может нанести серьезное повреждение при попадании в глаз, тогда как менее мощное непрерывное излучение может повредить глаз только при длительном облучении. Спектральная область особой важности - это опасный для сетчатки диапазон, который располагается между 400 (фиолетовый цвет) и 1400 нанометрами (ближняя ИК-область спектра), включая всю видимую область спектра электромагнитного излучения. Опасность повреждения светом этих длин волн усиливается возможностью глазной фокусировки, когда направленный свет собирается глазом на сетчатке в очень маленькое пятно, с очень высокой концентрацией мощности на единицу площади.

Классификация лазеров

Среди множества стандартов безопасности, разработанных для работы с лазерами, как государственными, так и другими организациями, основополагающим в США являются стандарты Z136 серии, принятые Американским национальным институтом стандартизации (ANSI). Стандарты безопасной работы с лазерами ANSI Z136 являются основой технических правил, утвержденных Управлением охраны труда (OSHA) и используемых для оценки рисков при работе с лазерами. Кроме того, они являются отправной точкой для технических инструкций, принятых во многих штатах. Вся лазерная продукция, продаваемая в США с 1976 года, должна быть классифицирована согласно этим стандартам и сертифицирована как отвечающая требованиям безопасности для своего класса. Результаты исследований и накопленное с опытом понимание потенциальной угрозы солнечного света и других источников излучения привели к установлению номинальной безопасной дозы облучения для большинства типов лазерного излучения. Для упрощения процедур обеспечения безопасности в целях предотвращения несчастных случаев была разработана система категорий безопасности лазеров, основанная на установленном пределе допустимого облучения и опыте, приобретенном за годы использования лазеров. Производитель лазера обязан сертифицировать свою лазерную продукцию на соответствие требованиям одной из категорий или классов риска, и соответствующим образом маркировать излучатели. В приведенном ниже списке кратко описаны четыре основные категории лазеров. Необходимо подчеркнуть, что это изложение является кратким и не отражает полного списка требований к категориям лазеров по степени их опасности.

  • Класс I Лазеры этого класса являются безопасными, согласно современным представлениям, при любом возможном излучении, при их конструкции. К маломощным устройствам (0.4 милливатт на длинах волн видимой области спектра), использующими лазеры этого класса, относятся лазерные принтеры, CD-плееры, оборудование для съемки. Не допускается, чтобы испускаемое ими излучение превышало предельно допустимый уровень воздействия на глаз. Более опасные лазеры могут быть включены в класс I, но никакое вредное излучение не должно проникать наружу во время работы устройства или его технического обслуживания (но не обязательно во время сервисного обслуживания или ремонта). Для использования лазеров этого класса не предусмотрено никаких особых мер безопасности.
  • Класс IA - специальное обозначение лазеров, со специальной областью применения, когда попадание лазерного луча в глаза маловероятно, например лазерные сканеры в супермаркетах. Для них допустима большая, чем для лазеров класса I, мощность (не более 4 милливатт), но предел длительности излучения лазеров класса I не должен превышать 1000 секунд.
  • Класс II - это маломощные лазеры, генерирующие видимое излучение. Яркость пучка должна быть такой, чтобы предупредить достаточно длительное облучение глаза и возможность повреждения сетчатки. Допустимая мощность излучения этих лазеров не превышает 1 милливатт, что ниже максимально допустимого предела облучения для мгновенного импульса в 0,25 секунд и менее. Считается, что естественный рефлекс моргания глаз на свет этой яркости должен защитить глаза, но любое намеренное наблюдение в течение длительного времени может нанести вред. К лазерам этого класса относятся демонстрационные лазеры в учебных комнатах, лазерные указки, различные дальномеры.
  • Класс IIIA - это лазерные устройства с непрерывной генерацией импульсов излучения средней мощности (1–5 милливатт), которые применяются в тех же областях, что и лазеры класса II, включая сканеры и указки. Они считаются безопасными при мгновенном попадании в глаз лазерного излучения (в течение менее 0,25 секунд), но при этом прямое попадание излучения в глаз или наблюдение через увеличительную оптику не допускается.
  • Класс IIIB - это лазеры средней мощности (непрерывная генерация излучения мощностью 5–500 милливатт, или 10 Дж на квадратный сантиметр в импульсных лазерах). Они небезопасны при прямом попадании в глаз или при зеркальном отражении. Специальные меры предосторожности описаны в стандартах безопасности для этого класса лазеров. Примерами этого типа лазеров являются спектральные приборы, конфокальные микроскопы, устройства для лазерных шоу.
  • Класс IV - это лазеры высокой мощности, превышающей мощность устройств класса IIIB, которые требуют строжайшего контроля за соблюдением мер безопасности при их использовании. Как прямой, так и диффузно-рассеянный лучи этого лазера являются опасными для глаз и кожи и могут вызвать возгорание материала, на который они падают (зависит от материала). Большинство повреждений глаз вызвано отраженным светом лазеров класса IV, поэтому все отражающие поверхности должны быть убраны с пути луча, и необходимо носить в течении всего времени работы с этими лазерами соответствующие защитные очки. Лазеры этой категории применяются в хирургии, при выполнении операций резания, сверления, микрообработки и сварки.

Хотя сегодня стандарты ANSI Z136 классифицируют лазеры на классы от I до IV, скорее всего, при следующем пересмотре стандартов ANSI будет принята новая классификация безопасности лазеров, чтобы привести ее в большее соответствие с международными стандартами, например, с принятыми Международной электротехнической комиссией (IEC) и теми, которые уже одобрены Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США. Изменения в стандартах, главным образом, являются ответом на повсеместное распространение таких устройств, как лазерные указки и подобных им, которые обычно используются людьми, незнакомыми с лазерной безопасностью. В этих изменениях также попытаются учесть специальные характеристики источников с высокой расходимостью пучка, таких как лазерные диоды. Эти изменения незначительны, и, в целом, с учетом накопленных знаний и опыта, продолжают курс на ослабление консервативных стандартов, разработанных в 1970-х годах.

Рис.2. Характеристики пропускания глаза человека

Новая классификация сохраняет четыре основных класса лазеров от 1 до 4, но смягчает требования в классах 1, 2 и 3 и вводит в них специальные подкатегории: 1M, 2M и 3R. Вкратце, новые категории могут быть описаны следующим образом: класс 1M включает лазеры, неспособные нанести вред, за исключением случаев попадания в глаза через оптические приборы. Лазеры класса 2M излучают видимый свет и безопасны, если не смотреть на них через оптические приборы и если время попадания на глаз менее 0,25 секунды. Это то время, за которое естественная ответная реакция на яркий свет и рефлекс моргания защищают сетчатку от повреждений. В класс 3R включены лазеры, которые приближаются к категории опасных при прямом попадании в глаз лазерного излучения. Они могут иметь выходную мощность в пять раз большую, чем лазеры классов 1 и 2. При их эксплуатации должны быть приняты дополнительные меры для предотвращения прямого попадания излучения, особенно для невидимого спектра.

Потенциальная опасность поражения глаз

Примечательно, что общим предостережением для большинства категорий лазеров является запрет смотреть на лазерный луч через любую увеличительную оптику. Основная опасность, которую лазеры представляют для человеческого глаза, следует из того, что глаз сам по себе является высокоточным и эффективным фокусирующим оптическим устройством для света в определенном диапазоне. Объединение лазеров с оптикой микроскопов только увеличивает потенциальную опасность поражения глаз лазерным излучением. Обычно в оптических лабораториях находится много лазеров, как встроенных в другие системы, например, во флуоресцентные микроскопы, так и в качестве источников света, устанавливаемых на открытых оптических скамьях. Главной опасностью, исходящей от этих «открытых» лазеров, является возможность попадания в глаза рассеянных горизонтальных лучей на высоте стола, лучей, отраженных от плоскости стола, от оптических компонентов и внешних отражающих поверхностей, таких как ременные пряжки, часы, драгоценности и любые другие отражающие поверхности в помещении. Попадание на долю секунды даже малой дозы отраженного излучения может быть достаточным для повреждения глаз и временной потери зрения.

Вероятность повреждения различных структур глаза лазерным излучением зависит от типа этих структур. Будет ли повреждена роговица, хрусталик, или сетчатка зависит от характеристик поглощения различных глазных тканей, а также длины волны и интенсивности лазерного излучения. Длина волны излучения, попадающего на сетчатку, внутреннюю поверхность глаза, определяется суммарными характеристиками пропускания глаза. На рисунке 2 представлена зависимость пропускания глаза от длины волны излучения в соответствующем спектральном диапазоне. Сетчатка, хрусталик и стекловидное тело глаза пропускают электромагнитное излучение в диапазоне приблизительно от 400 до 1400 нанометров, называемом диапазоном глазной фокусировки. Свет этого диапазона фокусируется на сетчатке - чувствительной поверхности, откуда сигналы поступают в мозг по зрительному нерву. При взгляде прямо на точечный источник света (что именно и происходит при прямом попадании в глаза коллимированного пучка лазерных лучей), на сетчатке формируется фокусное пятно малой площади, с высокой плотностью энергии, что с большой вероятностью приводит к повреждению глаза. Мы подвергаем себя, в определенной степени, той же опасности, когда прямо смотрим на солнце, только в случае лазеров, она еще больше.

Оптическое усиление ненапряженного человеческого глаза при попадании коллимированного пучка лучей, которое выражается как отношение площади зрачка к площади (сфокусированного) изображения на сетчатке, составляет величину около 100000. Это соответствует увеличению облученности (плотности потока излучения) при прохождении света от роговицы до сетчатки в пять раз. С учетом аберрации в системе хрусталик-роговица и дифракции на радужной оболочке глаза, нормальный глаз способен фокусировать на сетчатке пятно размером 20 микрометров. Такая эффективность глаза приводит к тому, что даже маломощный лазерный луч, при попадании в глаза, может быть сфокусирован на сетчатке и почти мгновенно прожечь в ней отверстие, безнадежно повредив при этом зрительные нервы. Кажущаяся малая мощность лазеров может быть очень обманчива, учитывая опасную степень концентрации энергии излучения при фокусировке лучей пучка. В случае прямого попадания в глаза лазерного пучка мощностью 1 милливатт, облученность, сетчатки составляет 100 ватт на квадратный сантиметр. Для сравнения, плотность потока солнечных лучей, если смотреть прямо на солнце, равняется 10 ваттам на квадратный сантиметр.

На рисунке 3 сравниваются возможности глаза при фокусировании света от двух источников: света от протяженного источника, такого как обыкновенная матированная стеклянная лампа, и высококоллимированного лазерного луча, который очень близок к свету от точечного источника. Из-за различной природы источников света, плотность потока на сетчатке от сфокусированного лазерного луча мощностью 1 милливатт может быть в миллион раз больше, чем от обыкновенной 100-ваттной лампочки. Если предположить, что лазерный пучок с идеальным гауссовским распределением интенсивности излучения по поперечному сечению падает на свободный от аберрации глаз под прямым углом, то размер пятна, ограниченного дифракционным пределом, может составить всего 2 микрона. Для протяженного источника этот размер будет порядка нескольких сотен микрон. При этом плотность потока (интенсивность излучения) на сетчатке, как показано на рисунке 3, составляет приблизительно 10 (E8) и 10 (E2) ватт на квадратный сантиметр соответственно.

Может показаться, что прожженное на сетчатке пятно, даже размером 20 микрометров, не приведет к существенному ухудшению зрения, поскольку сетчатка содержит миллионы колбочек (зрительных клеток). Тем не менее, повреждения сетчатки обычно больше первоначального фокусного пятна благодаря вторичным термическим и акустическим эффектам; и в зависимости от расположения, даже совсем маленькое повреждение сетчатки может привести к значительному ухудшению зрения. В самом худшем случае, когда глаз полностью расслаблен (сфокусирован на бесконечности), а лазерный луч падает на него под прямым углом или зеркально отраженный, луч фокусируется на сетчатке в самое маленькое пятно. Если повреждение происходит в месте соединения зрительного нерва с глазом, результатом может быть полная потеря зрения. Ожог сетчатки чаще всего возникает в области центрального зрения, macula lutea (желтое пятно), имеющей размеры около 2,0 миллиметров по горизонтали и 0,8 миллиметров по вертикали. Центральная часть пятна, называемая fovea centralis (центральная ямка), всего 150 микрометров в диаметре, но именно она обеспечивает остроту зрения и восприятие цвета. Области сетчатки вне этого крошечного участка воспринимают свет и фиксируют движение, то есть формируют периферийное зрение, но не участвуют в различении деталей. Следовательно, повреждение центральной ямки, хоть она и занимает всего 3–4 процента от площади сетчатки, может привести к необратимой потере остроты зрения.

Рис.3. Плотность излучения, попадающего на сетчатку от протяжённого и точечного источника

Диапазон длин волн, достигающих сетчатки глаза, охватывает весь видимый спектр от синего (400 нанометров) до красного (700 нанометров), а также ближнюю ИК-область спектра от 700 до 1400 нанометров (IR-A). Поскольку сетчатка не чувствительна к излучению вне видимого спектра, то при облучении ее ближними инфракрасными волнами, в глазу не возникает никаких ощущений, что делает лазеры, работающие в этом диапазоне гораздо более опасными для глаз. Будучи невидимым, луч, тем не менее, фокусируется на сетчатке. Как уже обсуждалось выше, из-за эффективной фокусирующей способности глаза, относительно небольшое лазерное излучение может повредить сетчатку, а иногда привести и к серьезным проблемам со зрением. Излучение импульсных лазеров обладает высокой интенсивностью, и при фокусировке на сетчатке может вызывать резкое кровоизлияние, причем пострадавший участок может быть по размеру гораздо больше фокусного пятна. Пораженные области сетчатки не заживают и, как правило, не восстанавливаются.

Благодаря другим компонентам глаза, главным образом роговице и хрусталику, поглощаемое сетчаткой излучение ограничено диапазоном глазной фокусировки, что по-другому можно назвать опасным для сетчатки диапазоном. В процессе поглощения вред наносится и самим поглощающим структурам. Но страдает при этом только ткань, поглощающая излучение, и ткани, непосредственно примыкающие к ней. В большинстве примеров облучения на длинах волн вне диапазона от 400 до 1400 нанометров, последствия были непродолжительными. Роговица ведет себя подобно коже, в том смысле, что она постоянно обновляется, и только весьма серьезные повреждения, приводящие к рубцам, могут повлиять на эффективность зрения. Наиболее сильное поражение роговицы вызывает излучение дальнего ИК и УФ спектра.

Из-за высокой фокусирующей способности глаза, облучение даже относительно слабым когерентным лазерным пучком может причинить непоправимый вред. Следовательно, при использовании мощного лазера, зеркальное отражение (при котором сохраняется когерентный пучок) даже нескольких процентов потока излучения в течение доли секунды, может вызвать повреждение глаза. И напротив, когда лазерный пучок отражается от шероховатой поверхности или, даже, от частиц пыли в воздухе, излучение рассеивается, и диффузно-отраженное излучение попадает в глаз под большим углом. При распределении энергии светового потока на большей площади, отраженный свет приобретает свойства протяженного источника, и создает на сетчатке изображение большего размера, в сравнении с концентрированным фокусным пятном от точечного источника (см. рисунок 3). Диффузия пучка, таким образом, уменьшает вероятность повреждения глаза не только за счет увеличения размера источника и уменьшения плотности светового потока, но также благодаря нарушению когерентности луча.

Таблица 1. Биологическое воздействие лазерного излучения

Фотобиологическая спектральная область (МКО диапазон)

Воздействие на глаз

Воздействие на кожу

Ультрафиолет C (200-280 нм)

фотокератит

эритема (солнечный ожог), рак кожи

Ультрафиолет B (280-315 нм)

фотокератит

эритема (солнечный ожог), ускоренное старение кожи, повышенная пигментация

Ультрафиолет A (315-400 нм)

фотохимическая УФ, катаракта

потемнение пигмента,

ожог кожи

Видимый (400-780 нм)

фотохимическое и тепловое повреждение сетчатки, ухудшение цветового и ночного зрения

ожог кожи, фоточувствительные реакции

Инфракрасный A (780-1400 нм)

ожог сетчатки, катаракта

ожог кожи

Инфракрасный B (1400-3000 нм)

ожог роговицы, воспаление водянистой влаги, катаракта, вызванная ИК- облучением

ожог кожи

Инфракрасный C (3000-1 миллион нм)

ожог роговицы

ожог кожи

Потенциальные поражения глаз могут быть классифицированы относительно длины волны лазерного излучения и по структурам глаза, которые могут быть повреждены. При этом наиболее сильное воздействие оказывается на сетчатку, а наиболее опасным диапазоном оказывается видимая и ближняя инфракрасная области спектра. В зависимости от количества поглощенной энергии, возможен тепловой ожог, поражение акустической волной или фотохимические изменения. Биологическое воздействие, оказываемое на глазные ткани излучением на различных длинах волн, кратко описано ниже и перечислено в таблице 1.

Ультрафиолет-B и C

(200–315 нанометров): Поверхность роговицы поглощает весь ультрафиолетовый свет в этом диапазоне, не допуская попадания излучения на сетчатку. В результате может развиться фотокератит (иногда называемый «сварочными зайчиками»), как следствие фотохимических процессов, приводящих к денатурации белка роговицы. В дополнение к лазерному, излучение этого диапазона может возникать от лазерной накачки или как компонент синего света при попадании в мишень, что требует дополнительных мер предосторожности кроме описанных в стандартах ANSI, которые учитывают лишь лазерное излучение. Воздействие на глаз в этом диапазоне обычно непродолжительно благодаря быстрому восстановлению роговичной ткани.

Ультрафиолет-A

(315–400 нанометров): Роговица и стекловидное тело пропускают свет этих длин волн, который поглощается, главным образом, хрусталиком глаза. Фотохимическая денатурация белка хрусталика приводит к развитию катаракты.

Видимый свет и инфракрасный-A

(400–1400 нанометров): Этот спектральный отрезок часто называют опасным для сетчатки диапазоном по той причине, что роговица, хрусталик и стекловидное тело прозрачны для света этих длин волн, и световая энергия поглощается сетчаткой. Поражение сетчатки возникает в результате тепловых или фотохимических процессов. Фотохимическое повреждение рецепторов сетчатки, может ухудшить либо общую светочувствительность или цветочувствительность глаза, а инфракрасные волны могут вызвать образование катаракты хрусталика. При поглощении глазом значительного количества энергии лазерного излучения, наиболее вероятен тепловой ожог, при котором свет, поглощенный гранулами меланина пигментированного эпителия, преобразуется в тепло. При фокусировке лазерного излучения этого диапазона роговицей и хрусталиком происходит увеличение облученности сетчатки приблизительно в 100000 раз. Вероятность поражения глаз излучением видимого диапазона лазеров относительно малой мощности, сокращается благодаря рефлексу моргания глаз (занимающего около 0,25 секунды), что помогает отвести взгляд от яркого луча. Если энергии пучка достаточно для повреждения глаза менее чем за 0,25 секунды, этот естественный защитный механизм становится неэффективен; к тому же он абсолютно бесполезен в невидимом ближнем инфракрасном диапазоне от 700 до 1400 нанометров. Лазеры, работающие в импульсном режиме, представляют дополнительную опасность поражения из-за генерации ударно-акустических волн в ткани сетчатки. Лазерные импульсы длительностью менее 10 микросекунд генерируют ударные волны, приводящие к разрыву ткани. Повреждения этого типа необратимы и потенциально более опасны, чем тепловой ожог, поскольку они обычно захватывают большую площадь сетчатки и возможны при меньшей энергии. Поэтому длительность облучения глаз, максимально допустимая стандартами безопасности, значительно меньше для короткоимпульсных лазеров.

Инфракрасный-B и инфракрасный-C

(1400 - 1 миллион нанометров): На длинах волн более 1400 нанометров роговица поглощает энергию благодаря содержащейся в ней воде и естественной слезной пленке. Это приводит к нагреванию и, как следствие, к денатурации белка у поверхности. Глубина проникновения растет с увеличением длины волны, а тепловое воздействие на белки хрусталика (критическая температура немногим больше нормальной температуры тела) может привести к его помутнению, называемому инфракрасной катарактой. В дополнение к образованию катаракты и ожога роговицы, инфракрасное излучение может привести к воспалению водянистой среды, при котором прозрачность водянистой среды передней камеры ухудшается из-за разрыва кровеносных сосудов.

В общем, лазерное излучение в ультрафиолетовом и далеком инфракрасном диапазонах поглощается роговицей и хрусталиком, и его воздействие зависит от интенсивности и длительности облучения. При большой интенсивности сразу возникает тепловой ожог, а слабое излучение может стать причиной дальнейшего развития катаракты. Конъюнктива тоже может пострадать при лазерном

облучении, хотя поражение конъюнктивы и роговицы обычно происходит при облучении светом большей мощности, чем поражение сетчатки. В результате, поскольку повреждения сетчатки приводят к более тяжелым немедленным последствиям, опасность повреждения роговицы учитывается лишь при работе с лазерами длин волн, не достигающих сетчатки (по существу, дальняя ИК-область и УФ).

Типы поражения кожи

Поражения кожи, вызванные воздействием лазерного излучения, обычно считаются менее важными по сравнению с возможностью поражения глаз; хотя с распространением лазерных систем высокой мощности, особенно ультрафиолетовых излучателей, незащищенная кожа может подвергаться чрезвычайно опасному облучению от не полностью закрытых систем. Являясь органом тела с самой большой поверхностью, кожа больше всего подвержена риску облучения, но, в то же самое время, она эффективно защищает от него большинство остальных органов (за исключением глаз). Важно иметь в виду, что многие лазеры предназначены для обработки материалов (например, резание или сверление), которые гораздо прочнее кожи, хотя такие лазеры обычно и не используются в микроскопии. Руки и голова - это те части тела, которые чаще всего подвергаются случайному облучению лазерным пучком при юстировке и других действиях с аппаратурой; и пучок достаточной интенсивности может вызвать тепловые ожоги, повреждения фотохимической и ударной (акустической) природы.

Наибольшие повреждения кожи возникают из-за высокой плотности излучения лазерного пучка, а его длина волны в некоторой степени определяет глубину проникновения и характер повреждения. Наибольшей глубиной проникновения обладают волны в диапазоне 300–3000 нанометров, достигая максимума в инфракрасном A спектре на длине 1000 нанометров. При работе с потенциально опасными для кожи лазерами должны быть приняты соответствующие меры предосторожности, а именно: необходимо носить одежду с длинными рукавами и перчатки из огнестойкого материала. Во многих случаях процедуры юстировки можно выполнить, используя лазеры меньшей мощности, чем требуется при проведении самих исследований.

Поражения электрическим током

Опасности поражения электрическим током, связанные с электрическими компонентами лазеров и источниками питания, одинаковы почти для всех типов лазеров и не требуют спецификации по категориям или конфигурациям лазеров. Все лазеры основных функциональных категорий (газовые, твердотельные, лазеры на красителях, полупроводниковые), за исключением полупроводниковых, требуют высокого напряжения и, часто, использования большого тока для генерации лазерного луча. Различие заключается только в месте приложения высокого напряжения - непосредственно к резонатору самого лазера, к лампе накачки или лазеру накачки, поскольку, тем не менее, оно никогда не присутствует в самой системе. Особенно опасными являются лазеры, сохраняющие высокое напряжение в конденсаторах или других компонентах уже после выключения. Это особенно характерно для импульсных лазеров, о чем нельзя забывать, когда по каким-либо причинам необходимо снять их корпус. Всегда надо помнить, что существует опасность удара током, если в точности не установлено обратное. Многим лазерам высокое напряжение необходимо только до начала генерации излучения, после чего они работают при обычном для бытовых устройств напряжении. Но это не может быть оправданием несоблюдения правил безопасности при работе с любым электрическим устройством.

Особые требования и меры безопасности при работе с лазерами микроскопов

Лазеры и сами измерительные приборы, включающие лазеры, должны отвечать определенным требованиям безопасности. В зависимости от класса безопасности лазер должен иметь либо прерыватель пучка, либо специальный механизм блокировки излучения ключом, либо другое устройство безопасности. При входе во все помещения, где находятся лазеры, представляющие потенциальную опасность, а также в тех местах рядом с лазером, где существует особенная опасность поражения, должны висеть предупреждающие знаки (примеры приведены на рисунке 4). Для устройств, лазерный луч которых не может попасть в глаза пользователю, дополнительных мер предосторожности не требуется.

Многие лабораторные лазеры имеют те же свойства, что и лазеры высокой мощности, используемые в промышленных целях, поэтому для их применения может потребоваться специальное экранирование для защиты оператора от лазерного пучка. Выходные длины волн для большинства обычно используемых лазеров приведены в таблице 2. В тех рабочих ситуациях, когда возможность попадания лазерного луча в глаза не может быть абсолютно исключена, необходимо надевать защитные очки. Важно, чтобы эти очки задерживали свет на длине волны лазера, но пропускали остальной свет, чтобы обеспечить соответствующую видимость. Ключевым моментом является соответствие фильтрации используемому лазеру, поскольку универсальных защитных очков для всех лазеров или для всех длин волн многоволнового лазера не существует. Поскольку лазерный луч может попасть в глаза под любым углом, прямым либо отраженным от поверхностей, очки должны блокировать все возможные направления.


Рис. 4. Знаки, предупреждающие о лазерной опасности

Титан-сапфировый лазер (обычно обозначаемый Ti: сапфировый лазер) является универсальным примером перестраиваемого твердотельного лазера на колебательных переходах. Лазерам этого типа необходима оптическая накачка встроенной лампой накачки или другим лазером, внутренним или внешним по отношению к основному. Из-за разнообразия конфигураций Ti: сапфировых лазерных систем невозможно дать для них единый набор правил безопасности. Эти лазеры могут работать как в непрерывном, так и импульсном режиме, и в зависимости от системы оптической накачки, требования электробезопасности, предъявляемые к ним, могут значительно изменяться. Перенастраиваемая длина волны титан-сапфировых лазеров обычно находится в диапазоне от 700 до 1000 нанометров, поэтому при работе с ними необходимо соблюдать стандартные меры безопасности для лазеров, работающих на длине волны, достигающей сетчатки (меньше 1400 нанометров). Поскольку длина волны излучения меняется, необходимо использовать защитные очки. Пользователь должен быть уверен, что любое блокирующее лазерный пучок устройство соответствует длине(ам) излучаемой волны. Один короткий мощный импульс при работе в импульсном режиме может нанести глазу непоправимый вред, поэтому необходимо принять все меры предосторожности, чтобы попадание луча на любом направлении, как прямом, так и периферийном.

Важно иметь в виду, что в некоторых конфигурациях Ti: сапфирового лазера рассеянный свет от лазера накачки может быть более опасным, чем луч основного лазера, и если есть хоть какая-нибудь вероятность попадания этого света в рабочую область, должна быть использована защита для глаз на соответствующей длине волны. Если лазер накачки стоит отдельно от вибронного лазера, могут потребоваться дополнительные меры предосторожности, чтобы исключить возможность излучения рассеянного света при сопряжении двух лазеров. В системах с накачкой импульсными лампами высокое напряжение, подаваемое на них, может сохраняться в качестве конденсаторного заряда и после выключения системы. Это необходимо помнить, чтобы избежать электрического удара при проведении технического обслуживания. Ближнее инфракрасное излучение, испускаемое лазерами этого типа, может быть особенно опасно, так как, хотя луч и невидим, или едва заметен на границе диапазона около 700 нанометров, на сетчатке фокусируется большое количество инфракрасного света.

Легирование хромом различных твердотельных материалов оказалось весьма перспективным для развития новых перенастраиваемых вибронных лазеров (на колебательных переходах). Поскольку они становятся все более распространенными, необходимо учитывать меры безопасности, специфичные для каждого типа этих лазеров. Легированный хромом стронций-литий-алюминиевый фторид (Cr:LiSAF) показал себя многообещающей средой лазеров с диодной накачкой, и в некоторых приложениях мультифотонной микроскопии используется вместо Ti: сапфировых лазеров. На перенастраиваемых длинах волн инфракрасного диапазона меры предосторожности аналогичны тем, которые применимы при использовании Ti: сапфирового лазера. Однако, поскольку лазеры, легированные хромом, появились относительно недавно, нужно иметь в виду, что защитные фильтры и очки могут не подходить для длин волн этих лазеров.

Аргоновый ионный, и менее распространенный криптоновый ионный лазеры, излучают на многих длинах волн и широко применяются в оптических исследованиях и методиках, таких, например, как конфокальная микроскопия. Аргоновые лазеры обычно относят к классу IIIB и классу IV по стандартам безопасности ANSI, поэтому необходимо избегать прямого облучения лазерным пучком. Сине-зеленые лучи высококогерентного пучка аргонового ионного лазера могут достигать сетчатки, вызывая непоправимые повреждения. Необходимо использовать защитные очки с сильным поглощением на основных длинах волн. Криптоновые ионные лазеры излучают на длинах волн несколько больших, чем аргоновые лазеры, и их излучение обычно меньшей мощности, частично потому, что они излучают на многих длинах волн видимого спектра, которые широко распределены всему спектру. Широкое распределение излучаемых волн по спектру представляет проблему при создании защитных очков, поскольку, задерживая свет всего излучаемого диапазона, они поглощают почти весь видимый свет, что сделает их практически непригодными для использования. Поэтому при работе с криптоновыми ионными лазерами нужна особая осторожность во избежание попадания их мультичастотного излучения в глаза. Аргоново-криптоновые лазеры стали популярны во флуоресцентной микроскопии, при наблюдении образцов с несколькими флуорофорами, когда требуется стабильное излучение на нескольких длинах волн; попадание на сетчатку любого излучения из этого диапазона должно быть исключено. К тому же, эти газоразрядные лазеры излучают ультрафиолет, который хорошо поглощается хрусталиком; а поскольку воздействие непрерывного излучения в этом диапазоне изучено слабо, необходимо носить защитные очки, поглощающие ультрафиолет. Криптоновый ионный лазер излучает на нескольких длинах волн в ближнем инфракрасном диапазоне, и его излучение практически невидимо, что может представлять серьезную опасность для сетчатки, несмотря на видимую малую мощность светового пучка. Высокое напряжение, необходимое для запуска лазерного разряда, и относительно сильные токи, для генерации излучения в непрерывном режиме представляют опасность поражения электрическим током.

Гелий-неоновые лазеры широко применяются в таких устройствах, как сканеры для супермаркетов и оборудование съемки и контроля. Имея мощность в несколько милливатт или меньше, они представляют собой источник такой же опасности поражения, как и прямой солнечный свет. При случайном взгляде на маломощный луч He-Ne лазера, он не окажет вредного воздействия на глаз; но высококогерентное излучение этого лазера фокусируется на сетчатке в очень маленькое пятно, и поэтому при длительном облучении, может причинить непоправимый вред. Основной эмиссионной линией He-Ne лазера является длина волны 632 нанометров, но возможны и другие длины волн от зеленой до инфракрасной. Более мощные версии гелий-неонового лазера представляют большую опасность поражения и должны использоваться с большой осторожностью. Невозможно заранее предсказать, какой именно уровень излучения вызовет те или иные повреждения глаз. Основное правило безопасности при работе с лазерами этой категории - следует избегать любого попадания луча в глаза, кроме мгновенного взгляда на луч, а также соблюдать правила электробезопасности при работе с источниками питания под высоким напряжением.

Другим газоразрядным лазером является гелий-кадмиевый лазер, широко использующийся в сканирующих конфокальных микроскопах, и излучает на фиолетово-синей и ультрафиолетовой длинах волн со значениями 442 нанометров и 325 нанометров, соответственно. От излучения синей области больше всего страдает сетчатка, чувствительность которой в этом диапазоне даже при низких уровнях облученности выше, чем к более длинноволновому излучению видимой области. Поэтому даже при низкой мощности излучения He-Cd лазера необходимо строго выполнять процедуры по соблюдению мер безопасности. Только малая часть ультрафиолета с длиной волны 325 нанометров может попасть на сетчатку из-за его сильного поглощения хрусталиком, но длительное облучение хрусталика этим светом может привести к развитию катаракты. Соответствующие защитные очки помогают избежать повреждения. Последняя версия He-Cd лазера представляет в этом смысле более трудную задачу, поскольку этот лазер одновременно излучает красный, зеленый и синий свет. Любая попытка одновременной фильтрации всех трех длин волн приводит к блокировке такой большой части видимого спектра, что пользователь уже не может выполнять необходимые задания, работая в защитных очках. Если отфильтрованы только две линии эмиссии, остается риск облучения третьей, поэтому требуется строгое соблюдение мер безопасности, для предупреждения облучения.

Азотные лазеры излучают на длине волны 337,1 нанометров УФ области спектра и используются в качестве импульсных источников во множестве приложений в микроскопии и спектроскопии. Их часто применяют в определенных методиках регистрации изображений и визуализации для накачки молекул красителей, для возбуждения излучения на дополнительных линиях с большей длиной волны Азотные лазеры способны генерировать излучение высокой мощности с чрезвычайно высокой частотой следования импульсов. При попадании излучения в глаз может быть поражена роговица, и, хотя поглощение на хрусталике в некоторой степени защищает сетчатку от ближнего ультрафиолета, нельзя сказать определенно, справедливо ли это для высокомощного импульсного излучения. Самым безопасным подходом при работе с лазерами этого типа является полная защита глаз. К тому же, для их работы требуется высокое напряжение, поэтому контакт с любыми компонентами системы питания может осуществляться только при полном отсутствии заряда.

Наиболее распространенные твердотельные лазеры основаны на введении ионизированного неодима в качестве примесей в уровни основного кристалла (легирование). Материалом для основного кристалла для неодима чаще всего служит алюмоиттриевый гранат, АИГ (YAG), синтетический кристалл, являющийся основой Nd:YAG лазера. Лазеры с неодимом представлены в огромном количестве модификаций, с различными значениями мощности излучения, как в непрерывном, так и в импульсном режиме. Их накачка может осуществляться полупроводниковым лазером, импульсной лампой, дуговой лампой, а их характеристики могут варьироваться очень значительно в зависимости от конструкции и области назначения. В силу их широко распространенности и определенной степени опасности, которую они в себе несут, от неодимовых лазеров пострадало, возможно, больше всего людей, чем от лазеров других категорий.

Алюмоиттриевые лазеры с неодимом (Nd:YAG) генерируют излучение ближней ИК области на длине волны 1064 нанометров, которое может вызвать серьезное повреждение сетчатки глаза, поскольку оно невидимо и велика вероятность поражения отраженными лучами. Большинство из этих лазеров, используемых в микроскопии, имеют диодную накачку и излучают короткие импульсы высокой интенсивности, опасные даже при попадании в глаза единственного отраженного импульса. Следовательно, любые направления возможного попадания света в глаза должны быть блокированы. В этом случае подходящим вариантом могут быть защитные очки, поглощающие инфракрасный, но пропускающие видимый свет, за исключением приложений, где используются гармоники более высокого порядка. Удвоение частоты производит вторую гармонику на 532 нанометрах (видимый зеленый свет), которая также проходит до сетчатки, и если эта эмиссионная линия используется, необходима дополнительная фильтрация для ослабления зеленого света. Утроение и учетверение частоты обычно применяется в Nd:YAG лазерах для получения третьей и четвертой гармоник на 355 и 266 нанометрах, что представляет различную опасность поражения. В этих случаях следует использовать защитные очки для фильтрации ультрафиолета, и, возможно, средства защиты кожи для предотвращения ожогов. Лазеры, генерирующие инфракрасное излучение мощностью несколько ватт, на второй, третьей и четвертой гармониках выдают сотни милливатт.

Таблица 2. Длины волн излучения наиболее распространенных лазеров

Тип лазера (область спектра)

Длина волны (нанометры)

Эксимерный, аргон-фтор (УФ)

Эксимерный, криптон-хлор (УФ)

Эксимерный, криптон-фтор (УФ)

Эксимерный, ксенон-хлор (УФ)

Эксимерный, ксенон- фтор (УФ)

Гелий-кадмиевый (УФ, видимый)

Азотный (УФ)

Криптоновый (видимый)

476, 528, 568, 647

Аргоновый (видимый)

На парах меди (видимый)

Nd:YAG, вторая гармоника (видимый)

Гелий-неоновый (видимый, ближний ИК)

543, 594, 612, 633, 1150, 3390

На парах золота (видимый)

На красителе родамине 6G (видимый, перенастраиваемый)

Рубиновый (видимый)

Полупроводниковый диодный (видимый, ближний ИК)

Титан-сапфировый (видимый - ближний ИК)

Nd:YAG (ближний ИК)

Эрбиевый (ближний ИК)

Фтористый водород (ближний ИК)

СО2 (дальний ИК)

Хотя излучение некоторых неодимовых лазеров с диодной накачкой имеет относительно невысокую мощность (особенно на гармониках высокого порядка и в непрерывном режиме генерации), в большинстве случаев, мощности их излучения достаточна для поражения, поэтому защита глаз необходима при работе с любым лазером этого типа. Трудность при работе с любым многочастотным лазером, состоит в том, что защитные очки должны перекрывать все опасные эмиссионные линии. При работе с гармониками высокого порядка мы не можем утверждать, что более длинноволновое излучение на основной частоте отсутствует, поэтому у многих коммерческих лазеров есть механизмы для удаления нежелательного излучения оптическим способом. У лазеров с неодимовым легированием, использующих для накачки лампу, вместо диода, существует дополнительная опасность поражения электрическим током из-за высокого напряжения в источниках питания.

Значительное число исследований проводится в поисках альтернативного основного кристалла для присадки в него неодима. По мере их появления в промышленных лазерах, отдельное внимание должно быть уделено безопасной работе с ними. Внедрение устройств, обеспечивающих безопасную работу с новыми лазерами, не всегда поспевает за появлением новых моделей лазеров. На сегодня наиболее распространенной альтернативой алюмоиттриевому гранату является литиево-иттриевый фторид (обозначаемый как YLF), и как импульсные, так и непрерывные Nd:YLF лазеры уже выпускаются серийно. Будучи во многих отношениях похожими на неодимовые:YAG лазеры, лазеры на Nd:YLF немного отличаются по длине основной волны (1047 нанометров), и это должно приниматься во внимание при создании защитных фильтров, как, например, в защитных очках, учитывая их поглощение света на основной гармонике и на гармониках более высокого порядка.

Полупроводниковые диодные лазеры представляют относительно новую технологию, распространяющуюся сейчас быстрыми темпами в разнообразных вариантах. Рабочие характеристики диодных лазеров зависят от множества факторов, включая электрические свойства полупроводника, технологию выращивания, использованную при его производстве и применяемые легирующие примеси. Длина волны излучения, испускаемого лазерной средой, зависит от ширины запрещенной (энергетической) зоны и других характеристик, определяемых структурой полупроводника. Продолжающееся развитие обещает расширение волнового диапазона промышленных диодных лазеров. Сегодня, полупроводниковые диодные лазеры с длинами волн больше 1100 нанометров используются, в основном, в волоконной оптике. Большинство лазеров этой категории основаны на активных слоях смеси индий-галлий-мышьяк-фосфор (InGaAsP) в различных пропорциях. В основном, они излучают на длине волны либо на 1300, либо на 1550 нанометров. Небольшой процент излучения на 1300 нанометров достигает сетчатки глаза, в то время как излучение длин волн, больших 1400 нанометров, представляет наибольшую опасность для роговицы. Серьезные повреждения глаза маловероятны, за исключением излучения достаточно большой мощности. Большинство диодных лазеров, излучающих на 1300 нанометров, маломощны и не представляют серьезной угрозы для глаз, если лазерный пучок не направлен прямо в глаза в течение длительного времени. Неколлимированные пучки излучения диодного лазера и пучки света, выходящие из оптоволокна, имеют большой угол расходимости, что обеспечивает дополнительную степень безопасности. Защитные очки должны использоваться при излучении высокой мощности, если не все излучение полностью направлено или содержится в оптоволокне. При юстировке оптических приборов с излучением в ближней ИК-области, кроме надетых защитных очков, задерживающих инфракрасный свет, можно использовать флуоресцентные экраны или другие тепловизионные устройства (ИК). Диодные лазеры работают на низком напряжении и при слабом токе, поэтому, обычно, не представляют электрической опасности.

Диодные лазеры, излучающие на номинальных длинах волн менее 1100 нанометров, основаны, главным образом, на смесях галлия и мышьяка, но постоянные разработки новых материалов и технологий расширяют диапазон их излучения до более и более коротких волн. С некоторыми исключениями, при работе с диодными лазерами требуются те же меры безопасности, что и с остальными, излучающими в том же диапазоне и на той же мощности. Как говорилось выше, фактором, понижающим, в некоторых случаях, потенциальную опасность диодных лазеров, является высокая расходимость их пучков, благодаря которой энергия пучка рассеивается во многих направления на коротком расстоянии от излучательной поверхности полупроводника. Тем не менее, если в приложении необходимо использовать дополнительную фокусирующую оптику, или какой-либо метод коллимации, этот фактор сводится на нет. Диодные лазеры, работающие на смеси индий-галлий-мышьяк-фосфор (InGaAlP), излучают на 635 нанометрах при милливаттной мощности, поэтому требования безопасности, предъявляемые при работе с ними, аналогичны предъявляемым к гелий-неоновым лазерам той же мощности. Некоторые варианты лазеров на аналогичных диодных смесях, излучают на 660 или 670 нанометрах, и хотя естественная реакция глаза обеспечивает некоторую защиту, глаз не так чувствителен к этим длинам волн, как к излучению на 635 нанометрах, а поэтому рекомендуется использование защитных очков. Необходимо обеспечить фильтрацию именно этих длин волн, так как защитные очки, изготовленные для поглощения больших длин волн, могут быть неэффективными на 660 и 670 нанометрах.

Различные смеси галлия, алюминия, мышьяка (GaAlAs) используются для изготовления диодных лазеров, излучающих в диапазоне от 750 до почти 900 нанометров. Из-за ограниченной чувствительности глаза к излучению на 750 нанометрах (возможно слабое восприятие красного света) и полного отсутствия чувствительности к более длинным волнам, эти лазеры представляют для глаз большую опасность поражения, чем работающие в видимом диапазоне. Диодные лазеры, работающие в этом диапазоне, могут генерировать излучение, значительно более высокой мощности (до нескольких ватт в диодной матрице), что может повредить глаз даже при коротком облучении. Невидимость этого пучка исключает естественную защитную реакцию глаза, поэтому необходимо носить защитные очки, особенно при работе с лазерами большой мощности. Лазеры на смеси индия-галлия-мышьяка (InGaAs) излучают даже на больших длинах волн, поэтому необходимы защитные очки, поглощающие 980-нанометровую линию, опять же для исключения возможности случайного попадания в глаза невидимого излучения.

В итоге, основными опасностями при работе с лазерами являются возможность повреждения глаз и поражения кожи при контакте с лазерным лучом, а также опасность электрического удара из-за высоких напряжений в лазерах. Следует принимать все меры предосторожности во избежание контакта (особенно глаз) с лазерным лучом, а когда это невозможно, необходимо носить защитные очки. При выборе защитных очков или других фильтров существенны четыре фактора: длина волны лазера, характер излучения (импульсный или непрерывный), тип лазерной среды (газ, полупроводник и т. д.) и выходная мощность лазера.

Существуют еще дополнительные, не связанные с излучением, опасности, некоторые из которых относятся к самой микроскопии, а другие встречаются довольно редко. Во многих промышленных приложениях лазеры используются для резки и сварки. Высокие температуры, возникающие при выполнении таких операций, могут способствовать появлению различных вредных дымов и испарений, которые обязательно должны удаляться из рабочих помещений. Это не имеет отношения к лазерам, используемым в оптической микроскопии, однако следует учитывать и соблюдать общие правила техники безопасности. В системах, накачиваемых импульсными лампами, существует опасность взрыва лампы при нагнетании в ней высокого давления. Корпус прибора должен быть сконструирован таким образом, чтобы удержать все осколки лампы, в случае такого взрыва. Для охлаждения лазеров (рубинового или с неодимовым легированием, например) могут использоваться криогенные газы, такие как жидкий азот или гелий. При попадании этих газов на кожу возможны ожоги. Если значительное количество газов выпускается в закрытом помещении, они, замещая собой находящийся в помещении воздух, могут вызвать недостаток кислорода. Электрическая безопасность, связанная с лазерным оборудованием, уже обсуждалась выше, но ее нельзя переоценить, так как корпуса приборов, предназначенные для защиты от поражения электрическим током, обычно снимаются при установке лазера, юстировке и техническом обслуживании. Некоторые лазерные системы (класса IV или 4, особенно) потенциально пожароопасны.

Сегодняшняя статья будет несколько занудной, поскольку поднимает те вопросы, которые обычно никто обсуждать не любит. И речь в ней пойдет об основных, наиболее важных вопросов связанных с ТБ по работе с лазерами. Я постараюсь рассказать об этой неприятной, но очень важной теме с минимумом нудных букв и цифр, которые так любят приводить в разных «справочниках по правилам безопасной эксплуатации», разобрав основные вопросы с помощью наглядных и доступных примеров в духе «что будет, если». Какую опасность таит в себе лазер, все ли лазеры одинаково опасны? Будем разбираться.

ВНИМАНИЕ: Данная статья может содержать ошибки и неточности, так как я не специалист в медицинских вопросах.

Как известно, основное свойство лазера – это очень высокая направленность и монохроматичность излучения, значительная мощность светового потока сконцентрирована в очень тонком пучке. В свою очередь каждый из нас снабжен очень чувствительным аппаратом для восприятия света – нашими глазами. Глаза, напротив, спроектированы так, чтобы использовать самые малые уровни интенсивности света для обеспечения их хозяина необходимой зрительной информацией. Уже становится понятно, что сочетание высококонцентрированного и мощного светового пучка с чувствительным зрительным органом уже слабосовместимо, соответственно такой пучок будет представлять опасность. Это, в общем-то, очевидно, если на Солнце нельзя смотреть дольше нескольких секунд, то в луч мощного лазера, который прожигает дырки в бумаге – и подавно. Но не всё так просто. Опасность лазерного излучения сильно зависит от его характера (импульсное или непрерывное), мощности, длины волны. Также очень многие установки основанные на газовых или твердотельных\жидкостных с ламповой накачкой лазерах содержат цепи и элементы, находящиеся под высоким напряжением – трансформаторы, радиолампы, коммутационные разрядники и тиратроны, мощные конденсаторы, которые являются источником электрической опасности. Но на них я заострять внимание не буду, об электробезопасности написана масса литературы и это набившая оскомину тема среди тесластроителей. Здесь я ограничусь лишь рассмотрением опасности только оптической – которую несет непосредственно лазерное излучение.

При варьировании параметров лазера будут также варьироваться механизмы повреждения глаза, которые детально описаны в специализированной литературе. Эффекты, производимые лазерным излучением, безотносительно его мощности описаны на картинке:

Эти данные не стоит принимать за истину в последней инстанции, это лишь версия одной из книг. Описанные эффекты могут комбинироваться в любых соотношениях, в зависимости от остальных параметров – мощности и длины волны. Строго говоря импульсный режим работы лазера можно разделить ещё на два – импульсный режим свободной генерации и импульсный режим с модулированной добротностью. Во втором случае лазер переводится в т.н. «режим гигантского импульса», когда вся накопленная при накачке энергия из рабочей среды выбрасывается коротким (единицы-десятки наносекунд) импульсом. Мощность в импульсе при этом достигает многих десятков и сотен мегаватт при скромных субджоульных энергиях. При воздействии «гигантского импульса» повреждения имеют в первую очередь взрывной механизм, так как образовавшееся при поглощении тепло не может отвестись никуда за столь короткое время. При действии импульса свободной генерации повреждения идут больше по термическому механизму, поскольку тепло частично успевает отводиться и распределиться в толще поглощающего слоя, так как импульс имеет меньшую пиковую мощность из-за сравнительно большой длительности (миллисекунды).

Особенно характерна роль длины волны, поскольку прозрачность глазных сред неодинакова для разных длин волн. В качестве отступления от темы отмечу, что для рентгеновского или гамма-излучения принято считать, что биологический эффект не зависит от длины волны, меняется только проникающая способность. И в целом в профильной литературе на вопросах защиты от рентгеновского излучения задерживаются лишь на нескольких страницах, тогда как вопросам, связанным с безопасностью при работе с лазерным излучением могут посвящать целые разделы. Но вернемся к зависимости эффектов от длины волны. Тут обратимся к ещё одной таблице из той же книжки. В ней описаны механизмы повреждения в зависимости от длины волны, опять же безотносительно мощности.

Понятно, что наиболее очевидной будет опасность излучения видимого диапазона, так как именно оно достигает сетчатки и воспринимается ей. Но если это очевидно – это не значит что наиболее опасно. В том-то и дело, что луч видимого диапазона можно заметить, да и мигательный рефлекс глаза в этом случае работает безотказно, в ряде случаев он может сильно уменьшить повреждения. Тогда как луч из ближнего инфракрасного диапазона уже заметить нельзя, но он тоже достигнет сетчатки и мигательного рефлекса нет. Именно сетчатка является наиболее чувствительной деталью глаза к повреждениям, и что самое печальное – неспособной к регенерации.

Таким образом, если известны режим излучения и длина волны, остается последний, по сути, решающий фактор – это мощность излучения. Именно она решает, сгорят у Вас глаза под лучом полностью, частично или не сгорят совсем. В зависимости от длины волны меняется лишь величина этой мощности, если луч непрерывный, или энергии импульса, если луч импульсный.

Именно по мощности излучения было принято разделение лазеров на существующие сейчас классы опасности. Рассмотрим их подробнее, заглянув на сайт Sam’s Laser FAQ. Для удобства приводится русский перевод с английского, выполненный модератором форума laserforum.ru Gall’ом. А кто найдет ошибку на картинке – тот молодец.

Итак, классы опасности.

Лазерные изделия класса I
Нет известных биологических угроз. Излучение закрыто от любого возможного рассматривания человеком, а лазерная система имеет блокировки, не позволяющие включить лазер в открытом состоянии. (Большие лазерные принтеры, такие как DEC LPS-40, работают на гелий-неоновых лазерах в 10 мВт, являющихся лазерами класса IIIb, но принтер имеет блокировки для исключения любого соприкосновения с открытым лазерным пучком, поэтому устройство не представляет биологической опасности, хотя собственно лазер относится к классу IIIb. Это же относится и к проигрывателям CD/DVD/Blu-ray и маленьким лазерным принтерам, так как они являются лазерными изделиями класса I).

Лазерные изделия класса II
Выходная мощность до 1 мВт. Такие лазеры не считаются оптически опасными устройствами, так как рефлексы глаз предупреждают любое происходящее повреждение. (Например, когда в глаз попадает яркий свет, веко автоматически моргает или человек поворачивает голову так, чтобы яркий свет пропал. Это называется рефлекторным действием или временем реакции. Лазеры класса II не создают повреждений глаза за такое время. Также никто не захочет смотреть на него в течение более продолжительного времени.) На лазерном оборудовании должны быть размещены предупреждающие знаки (желтые). Нет известных опасностей воздействия на кожу и нет пожарной опасности.

Лазерные изделия класса IIIa
Выходная мощность от 1 мВт до 5 мВт. Такие лазеры могут приводить к частичной слепоте при определенных условиях и к другим повреждениям глаз. Изделия, содержащие лазер класса IIIb, должны иметь индикатор лазерного излучения, показывающий, когда лазер работает. Они также должны иметь знак «Danger» («опасность») и знак, показывающий выходное отверстие лазера, закрепленные на лазере и/или оборудовании. СЛЕДУЕТ установить выключатель питания в виде замка с ключом, чтобы предотвратить несанкционированное использование. Нет известных опасностей для кожи и пожарной опасности.

Лазерные изделия класса IIIb
Выходная мощность от 5 мВт до 500 мВт. Такие лазеры считаются определенно угрозой для зрения, особенно на больших мощностях, которые ПРИВЕДУТ к повреждению глаз. Такие лазеры ОБЯЗАНЫ иметь замок с ключом против несанкционированного использования, индикатор наличия лазерного излучения, задержку включения от 3 до 5 секунд после подачи питания, чтобы оператор мог успеть уйти с пути луча, и механический затвор, позволяющий перекрывать луч во время использования. Кожа может быть обожжена на больших уровнях выходной мощности, а кратковременное направление на некоторые материалы может приводить к возгоранию. (Я видел аргоновый лазер на 250 мВт, воспламеняющий кусок красной бумаги менее чем за 2 секунды воздействия!) Красный знак «DANGER» («ОПАСНОСТЬ») и знак выходного отверстия ОБЯЗАНЫ быть размещены на лазере.

Лазерные изделия класса IV
Выходная мощность >500 мВт. Такие лазеры МОГУТ повредить и ПОВРЕДЯТ глаза. Мощности уровня IV-го класса МОГУТ зажечь и ЗАЖГУТ горючие материалы при попадании, в том числе обожгут кожу и прожгут одежду. Такие лазерные изделия ОБЯЗАНЫ иметь:
Замок с ключом для предотвращения несанкционированного использования, блокировки для предотвращения использования системы со снятыми крышками, индикаторы наличия излучения, показывающие, что лазер работает, механические затворы для блокировки луча и красные знаки «DANGER» («ОПАСНОСТЬ») и знаки выходного отверстия, закрепленные на лазере.
Отраженный луч должен считаться таким же опасным, как первоначальный луч. (И снова, я видел 1000-ваттный лазер на CO2, прожигающий дыру в стали, так что представьте, что он сделает с вашим глазом!)

Конец цитаты.

Примечание: да, мои лазеры в основном относятся к 4ому классу опасности, и не содержат многих аппаратных мер защиты, поскольку с ними имею дело только я. Поэтому попрошу воздержаться в комментариях от вопросов, почему нет замка-выключателя или крышек с блокировками на моих лазерах. Указанные требования относятся в первую очередь к коммерчески выпускаемым установкам.

Теперь посмотрим, так сказать, наглядно, как выглядит травма глаза лазерным излучением. Я уже упоминал, что в поисках новых лазеров и их компонентов я посещаю различные организации. И однажды я посетил лазерное отделение местного центра лечения глазных болезней. В ходе общения со специалистами, я поинтересовался, попадались ли в их практике травмы, вызванные лазерным излучением. Ответ меня удивил. Дело в том, что за более чем 20летнюю практику работы, непосредственно лазерных травм было всего несколько штук. На мой вопрос, типа как так, если сейчас у каждого ребенка есть лазерная указка от 50 до 2000 мВт, лишь ответили, что людей с ожогами от указок не поступало. Зато было много людей именно с солнечными, нелазерными, ожогами сетчатки. Мне показали документы по наиболее примечательной лазерной травме – сильному повреждению центральной ямки сетчатки, вызванному зеркально отраженным импульсом из лазерного дальномера, построенном на импульсном неодимовом лазере (Nd:YAG) работавшем в режиме модуляции добротности. Энергия импульса составляла по разным оценкам от 20 до 100 мДж, при длительности импульса порядка 20 нс. Именно из-за модуляции добротности повреждение вышло столь тяжелым – так как в точке фокуса излучения был оптический пробой, вызвавшим гидравлический удар, который в свою очередь привел к центральному разрыву сетчатки и отеку последней совместно с гемофтальмом (кровоизлиянием в стекловидное тело). Мне разрешили просканировать документы на условиях их полной анонимизации. С помощью оптической когерентной томографии можно рассмотреть сетчатку в разрезе, в различных плоскостях. Так выглядел разрез на момент обращения за медицинской помощью. Видна четкая «пробоина» с «отогнутыми наружу» краями (на самом деле это отек).

Более крупным планом:

И в разных плоскостях:

Из текста предоставленных мне документов стало известно, что курс лечения длился 10 дней, по ходу которого решался вопрос об операции, в случае отслоения сетчатки. В качестве оперативного вмешательства по устранению возможной отслойки и закрытия разрыва предлагалась пневморетинопексия (ПРП). Консервативное лечение было направлено на рассасывание отека и предотвращение воспалительного процесса. По ходу наблюдения делалось также несколько фотографий глазного дна, а по окончанию курса было решено, что операция не понадобится, так как разрыв самостоятельно закрылся и зарос рубцовой тканью.

Фотографии глазного дна размещены в хронологическом порядке.

В кучке этих же документов лежала ещё одна распечатка оптической когерентной томографии после окончания лечения.

Как можно видеть, канал пробоя исчез, а края того места, которое было центральной ямкой приняли более сглаженные формы. На момент травмы острота зрения по табл. Сивцева составляла 0%, после окончания лечения было достигнуто улучшение до 30%. На мой вопрос, как это воспринимается субъективно, мне показали ещё одну картинку, на которой наглядно показано, что такое «центральная скотома». Это слепое пятно, из которого просто выпадает часть изображения. Мозг же способен «закрасить» его под цвет окружающего фона, но никаких деталей изображения видно не будет, так как нечем их видеть – светочувствительные клетки в этом месте уничтожены. Для данной статьи картинка взята из гугла. Также мне объяснили, что при наличии второго здорового глаза это слепое пятно не влияет на качество жизни.

Позже, мне удалось раскопать ещё одну таблицу со сравнительными клиническими данными, где рассматриваются исходы лазерных травм в зависимости от типа лазера и режима его работы. Как можно видеть, наиболее неблагоприятные исходы – в случае травм от лазеров, работавших в режиме модулированной добротности, так как повреждение сетчатки шло по взрывному механизму, тогда как лазерный импульс в режиме свободной генерации приводит только к термическому ожогу, который до некоторых пределов обратим, не смотря на гораздо большую энергию излучения. Строго говоря, локализация повреждения играет бОльшую роль, нежели параметры лазера, повреждение центральной ямки во всех случаях необратимо.

Вот ещё пример фотографии глазного дна с лазерным ожогом сетчатки, вызванным импульсом лазера на красителях. Лазеры на красителях сопоставимы с импульсными лазерами с модуляцией добротности по длительности импульса и энергии.

А теперь давайте посмотрим, как это происходит в динамике. Yun Sothory провел эксперимент «что будет если посмотреть в лазер», использовав в качестве подопытной жертвы дешевую веб-камеру, а в качестве лазера – самодельный лазер на растворе красителя, который накачивался самодельным азотным лазером. Результат на видео. И это при том, что у неё совершенно неживая и дубовая кремниевая «сетчатка». Что будет с глазами вполне очевидно.

Вот ещё один пример пострадавшей матрицы фотоаппарата - на 1:06 появляется линия выжженых пикселей вверху во время сценического лазерного шоу. Кстати, безопасность лазерных шоу это отдельная очень холиварная тема, о которую было сломано очень много копий в СНГ и на западе. Мощность лазерного излучателя до оптической системы разбивки и развертки луча порой достигает десятков Ватт.

Разберем теперь вопрос, а все ли лазеры одинаково опасны?
Можно однозначно сделать вывод, что наиболее опасными являются лазеры, работающие в импульсном режиме с малой длительностью импульса видимого и ближнего ИК-диапазона, особенно последние. И это действительно так. Однако, правила которые обычно пишутся занудным тоном для малоподговтоленных людей, заявляют что опасны все без исключения лазеры и любой лазер нужно жестко огораживать, запихивать под землю и никого к нему не подпускать. Тут нужны некоторые оговорки, поскольку все должно быть в пределах разумного. Не все лазеры одинаково опасны. Есть те, которые более опасны, есть те, которые менее опасны. Дальше следует моё жёсткое ИМХО, которое не претендует на истинность. А именно, оно состоит в том, что с любым лазером любой длины волны, кроме ближнего ИК-диапазона можно работать без средств защиты, если он работает в непрерывном или квазинепрерывном режиме, его средняя мощность не превышает 10-20 миллиВатт, и если не пялиться в луч. А если хочется пялиться, если есть риск попадания луча в глаза, например при визуальной настройке оптических систем, то абсолютный верхний предел мощности – 0.5-1 мВт, как написано в описании 2 класса опасности. Можно удовлетворить свое любопытство заглянув на 1-2 секунды в луч маленького гелий-неонового или диодного лазера мощностью 1 мВт и понять что это крайне неприятно, сравнимо с взглядом на Солнце. Но это мой личный опыт. Я бы все же рекомендовал никогда не пренебрегать средствами защиты глаз во всех случаях обращения с лазерами. Особняком среди мощных лазеров 4го класса стоят, опять же, лазеры на парах меди, так как из-за очень широкого пучка, энергетическая плотность у них маленькая. Так, к примеру, плотность мощности в пучке составляет 16 мВт\мм2. Если предположить случайное попадания такого луча в глаз, то повреждения будут сравнимы с таковыми от вполне рядовой лазерной указки на 100 мВт, при условии что диаметр зрачка на этот момент будет порядка 3 мм. Но это лишь мои предположения, никому не советую проверять на практике. Средства защиты глаз при работе с таким лазером совершенно необходимы.

Если снова обратиться к таблице зависимости повреждений от длины волны, показанной в начале статьи, то может создаться впечатление, что для лазеров с излучением вне видимого и ближнего ИК-диапазонов защита не нужна, так как излучение не достигнет сетчатки, поскольку глазные среды непрозрачны на длинах волн короче 400 нм и длиннее 3 мкм. Отчасти это правильно. Действительно, сетчатка не пострадает, так как излучение с длиной волны больше 3 мкм поглощается слезной пленкой, и при небольших мощностях\энергиях это не опасно. Именно поэтому маломощные лазерные источники вроде лазерных дальномеров как раз переводят на длину волны порядка 3 мкм (эрбиевые лазеры). С другой стороны, есть серьезный риск сжечь роговицу, если мощность будет достаточной. При воздействии УФ излучения большой мощности повреждения идут в основном по фотохимическому механизму, а в случае дальнего ИК – по термическому. Но мощность нужна большая, на порядки бОльшая чем для лазеров видимого диапазона. Фигурально выражаясь, лазеры можно сравнивать с разными видами змей, среди которых есть ядовитые, убивающие одним своим кратким укусом, и удавы, убивающие с помощью большой и грубой силы долго и нудно, пока жертва не задохнется. Лазеры из невидимых УФ и дальних ИК-диапазонов можно сравнить именно с удавами, так как их мощность и есть та самая «грубая сила», особенно это касается СО2-лазеров излучающих сотни и тысячи Вт на длине волны 10.6 мкм. Вот пример ожога роговицы излучением СО2 лазера.

С вопросом «кто виноват» разобрались, теперь переходим к вопросу «что делать». Или, какие меры защиты стоит выбирать при работе с лазерным излучением. Основной мерой защитой от лазерного излучения является в первую очередь ограждение пути движения луча, ограничение его распространения поглотителями в конце оптического пути. Если ограждение организовать невозможно – то обязательно нужны защитные очки для глаз. Лучше когда обе меры защиты дополняют друг друга. Тем не менее, универсальных защитных очков не существует, кроме, разве что, таких. Посему прежде чем выбирать очки нужно точно знать, с какими лазерами предстоит иметь дело.

Все защитные очки проектируются для защиты от конкретных длин волн излучаемых лазерами, и для хороших очков всегда нормируется оптическая плотность на каждой длине волны. Оптическая плотность это коэффициент ослабления очков, в англоязычных стандартах он называется OD-X, где Х – цифра обозначающее количество порядков ослабления. Так, например, OD-6 означает, что очки ослабляют излучение на 6 порядков, т.е. в 1000000 раз на данной длине волны. Ослабление в 1000 раз будет обозначаться как OD-3 итд. Хорошие очки всегда имеют инструкцию к ним, в которой написано от каких длин волн излучения они защищают, и какие OD для каждой длины волны. Также, хорошие очки всегда имеют закрытую конструкцию и плотно прилегают к лицу, чтобы блики от излучения не могли пройти под очками, минуя фильтры. Вот примеры действительно ХОРОШИХ очков. Например, советские ЗНД-4-72-СЗС22-ОС23-1, которыми пользуюсь я. Это пример попытки сделать более-менее универсальные очки, рассчитанные на работу с распространенными типами лазеров. Для этого они имеют два вида светофильтров. Очки сделаны из мягкой резины, хорошо прилегающей к лицу, и имеют инструкцию.

Синие светофильтры предназначены для защиты от лазеров, работающих на длине волны 0.69 мкм и 1.06 мкм (рубиновый и неодимовый лазеры). На этих длинах волн гарантируется плотность OD-6. Эти же фильтры дают защиту от излучения в диапазоне длин волн 630-680 нм (гелий-неоновый, криптоновый лазеры) и в диапазоне 1.2-1.4 мкм, для них заявлено OD-3. Оранжевые фильтры дают защиту от длин волн в диапазоне от 400 до 530 нм (синие и зелёные лазеры) с OD-6 и также в диапазоне 1.2-1.4 мкм с OD-3. Сами по себе оранжевые фильтры не могут дать никакой защиты от излучения красных лазеров – для них нужны синие фильтры. Для удобства синие фильтры сделаны откидывающимися.

Такие очки я всегда использую при работе со всеми своими мощными лазерами, и они могут гарантировать защиту, при условии соблюдения инструкции. К сожалению, они имеют брешь для жёлтых лазеров, т.е. не дают гарантированной инструкцией защиты и ввиду этого полной универсальностью не обладают. У этих очков есть в продаже современный аналог, но он менее универсален, так как не имеет оранжевых фильтров.

Вот ещё один пример ХОРОШИХ очков иностранного производства. Они имеют сплошное прямоугольное стекло, не затрудняющее обзор, и прямо на корпусе очков отлит текст с параметрами по длинам волн и OD на них.

Теперь глянем не примеры ПЛОХИХ очков, которые я КАТЕГОРИЧЕСКИ не рекомендую. Это весь тот пластиковый китайский шлак, продаваемый на алиэкспрессе за 1-2-10 долларов. Эти очки не имеют ни полного прилегания к лицу, ни инструкций с заявленной оптической плотностью на разных длинах волн, ни сертификатов, ничего. И сделаны они из довольно нежного пластика. Готовы ли Вы доверить сохранность своих глаз какому-то безымянному китайцу, работающему за тарелку риса? Я не готов. Не покупайте китайский шлак, показанный ниже.

Единственное исключение – СО2 лазеры. Их излучение, вообще говоря, «тепловое» - длина волны слишком большая, и не проходит даже через простое прозрачное стекло и через простой прозрачный пластик. Т.е. показанные выше ХОРОШИЕ очки пригодны и для защиты от СО2 лазеров. Показанные здесь ПЛОХИЕ очки тоже обеспечат достаточную защиту от рассеянного излучения СО2 лазера, но не более того. Я бы все же рекомендовал стеклянные, так как прямой луч такого лазера просто прожжет пластик.

Отдельно я бы хотел остановиться на мерах безопасности, к которым прибегают производители лазерных технологических установок. В принципе, в случае если на нашем лазерном станке стоит СО2 лазер, то защита, полностью закрывающая поле обработки не обязательна при небольших уровнях мощности, типа до 50 Вт. А так достаточно ограждения из обыкновенного стекла или пластика. В принципе даже на лазерных станках с СО2 лазером мощностью на много киловатт не всегда можно встретить ограждение от рассеянного излучения, так как оно не представляет большой опасности, так как это излучение тепловое и воспринимается просто как поток тепла, когда Вы смотрите на открытую спираль электроплитки или ИК-обогревателя. Чувствуется дискомфорт – можно и отойти подальше. Отсутствие защиты на станках с СО2 лазерами вполне допустимо. Но оно категорически запрещено на установках с получающими большое распространение волоконными лазерами! Волоконный лазер работает на длине волны порядка 1 мкм, которое, как говорилось выше, легко достигает сетчатки, на уровнях мощности уже в единицы Вт рассеянное излучение очень опасно для глаз, и для таких лазерных установок ограждение рабочего поля с блокировкой ОБЯЗАТЕЛЬНО!!! Вот пример, где это сделано правильно. Все рабочее поле этих станков для резки закрыто стеклом, которое не пропускает рассеянное излучение.

Лазерные маркировщики, граверы также должны иметь обязательно закрытое поле, так как это тоже или волоконные лазеры, или неодимовые лазеры, работающие в режиме модуляции добротности, очень опасные для глаз. Пример, как это должно быть правильно.

А теперь, наглядная картинка как китайцы относятся к нашему здоровью. За такое исполнение лазерного гравера нужно бить по голове палкой, выписывать многомиллионный штраф и лишать права производить эти станки. Ведь покупатель, увидев такой станок без защиты рабочего поля, решит что она и не нужна, раз производитель её не установил. При работе все рассеянное и отраженное излучение, особенно во время гравировки по металлу будет лететь ему прямо в глаза. Если конечно он не надел очки. А я не уверен, что он их наденет. И если он при работе с таким станком получит повреждение сетчатки – то будет иметь полное право подавать иск в суд на производителя и запросто выиграет его, слупив большую сумму денег.

Так что, не покупайте китайский шлак, пользуйтесь правильными средствами защиты и не смотрите в луч оставшимся глазом!

При написании статьи были использованы материалы из следующих источников, помимо бездонных глубин интернетов:

1. Гранкин В. Я. Лазерное излучение, 1977

Ультрафиолетовый свет лежит за пределами видимого человеческим глазом диапазона электромагнитного излучения, а его главнейшим источником является наша звезда – Солнце. Выделяют ближние и дальние УФ лучи. При этом дальние лучи, которые также называются вакуумными, полностью растворяются в верхних слоях атмосферы. До поверхности земли долетает только ближний УФ свет, волны которого делятся на:

  • длинные (УФ-А) с длиной волны 315-400 нм;
  • средние (УФ-В) с волной 280-315 нм;
  • короткие (УФ-с) – 100-280 нм.

Что же касается искусственных источников ультрафиолета, которыми выступают специализированные детекторы, UV лампы и светодиодные фонари, то подавляющее большинство из них излучает свет в длинном УФ диапазоне, за исключением некоторых детекторов валют со светом в 254 нм.

Вред ультрафиолетового света

Наиболее вредными для человеческого организма являются короткие UV волны. Что же касается среднего и длинного ультрафиолетового излучения, то оно может иметь негативные последствия для человека только при длительном интенсивном воздействии. Это:


Именно поэтому при проведении различных мероприятий, требующие применение мощных УФ ламп или фонарей, рекомендовано использовать средства защиты, включая специальные очки и элементы экранирования.

Однако правильное и умеренное воздействие ультрафиолетом на организм человека может быть и полезным для него. В современной медицине ультрафиолет активно используется с целью:

  • активизации выработки витамина D ;
  • улучшения обменных процессов;
  • стимуляции выработки эндорфина;
  • снижения степени возбудимости нервных окончаний;
  • улучшения кровообращения;
  • обеззараживания.


О ультрафиолетовых фонарях:

Они делятся на 2 типа:

Светодиодные - со спектром , , Более низкий спектр светодиоды просто не способны излучать. Как писалось выше, это длинные волны, граничащие с обычным фиолетовым светом. Они полностью безопасны для зрения при непродолжительном использовании. Или если не направлять свет прямо в глаза (это относится и к обычным белым фонарикам и лампам). При длительном использовании может начать болеть голова и резать глаза. Приведем еще один пример -специальные используют на дискотеках и в ночных клубах. Люди часами находятся под УФ светом не замечая дискомфорта.

На газоразрядной лампе - такие лампы могут быть как безопасными, так и очень опасными, мгновенно вызывая ожог сетчатки глаза. Все зависит от их назначения. Например, опасные лампы применяют в больницах при дезинфекции.

Таким образом, правильное использование светодиодного ультрафиолетового фонаря и соблюдение норм безопасности не может навредить организму.