Таблица виды деформации примеры физика. Виды деформации твердых тел

Под внешним воздействием тела могут деформироваться.

Деформация - изменение формы и размеров тела. Причина деформации заключается в том, что различные части тела совершают неодинаковые перемещения при действии на тело внешних сил.

Деформации, которые полностью исчезают после прекращения действия силы, - упругие , которые не исчезают, - пластические .

При упругих деформациях происходит изменение расстояния между частицами тела. В недеформированном теле частицы находятся в определенных положениях равновесия (расстояния между выделенными частицами - см. рис. 1, б), в которых силы отталкивания и притяжения, действующие со стороны других частиц, равны. При изменении расстояния между частицами одна из этих сил начинает превышать другую. В результате возникает равнодействующая этих сил, стремящаяся вернуть частицу в прежнее положение равновесия. Равнодействующая сил, действующих на все частицы деформированного тела, и есть наблюдаемая на практике сила упругости. Таким образом, следствием упругой деформации является возникновение упругих сил.

При пластической деформации , как показали наблюдения, смещения частиц в кристалле имеют совсем другой характер, чем при упругой. При пластической деформации кристалла происходит соскальзывание слоев кристалла относительно друг друга (рис. 1, а, б). Это можно увидеть с помощью микроскопа: гладкая поверхность кристаллического стержня после пластической деформации становится шероховатой. Соскальзывание происходит вдоль слоев, в которых больше всего атомов (рис. 2).

При таких смещениях частиц тело оказывается деформированным, но на смещенные частицы при этом не действуют "возвращающие" силы, так как у каждого атома в его новом положении такие же соседи и в таком же числе, как и до смещения.

При расчете конструкций, машин, станков, тех или иных сооружений, при обработке различных материалов важно знать, как будет деформироваться та или иная деталь под действием нагрузки, при каких условиях ее деформация не будет влиять на работу машин в целом, при каких нагрузках наступает разрушение деталей и т.д.

Деформации могут быть очень сложными. Но их можно свести к двум видам: растяжению (сжатию) и сдвигу.

Линейная деформация возникает при приложении силы вдоль оси стержня, закрепленного с одного конца (рис. 3, а, б). При линейных деформациях слои тела остаются параллельными друг другу, но изменяются расстояния между ними. Линейную деформацию характеризуют абсолютным и относительным удлинением.

Абсолютное удлинение , где l - длина деформированного тела, - длина тела в недеформированном состоянии.

Относительное удлинение - отношение абсолютного удлинения к длине недеформированного тела.

На практике растяжение испытывают тросы подъемных кранов, канатных дорог, буксирные тросы, струны музыкальных инструментов. Сжатию подвергаются колонны, стены и фундаменты зданий и т.д.

Возникает под действием сил, приложенных к двум противоположным граням тела так, как показано на рисунке 4. Эти силы вызывают смещение слоев тела, параллельных направлению сил. Расстояние между слоями не изменяется. Любой прямоугольный параллелепипед, мысленно выделенный в теле, превращается в наклонный.

Мерой деформации сдвига является угол сдвига - угол наклона вертикальных граней (рис. 5).

Деформацию сдвига испытывают, например, заклепки и болты, соединяющие металлические конструкции. Сдвиг при больших углах приводит к разрушению тела - срезу. Срез происходит при работе ножниц, пилы и др.

Деформации изгиба подвергается балка, закрепленная с одного конца или закрепленная с двух концов, к середине которой подвешен груз (рис. 6). Деформация изгиба характеризуется стрелой прогиба h - смещением середины балки (или его конца). При изгибе выпуклые части тел испытывают растяжение, а вогнутые - сжатие, средние части тела практически не деформируются - нейтральный слой . Наличие среднего слоя практически не влияет на сопротивляемость тела изгибу, поэтому такие детали выгодно делать полыми (экономия материала и значительное снижение их массы). В современной технике широко используются полые балки, трубки. У человека кости тоже трубчатые.

Деформацию кручения можно наблюдать, если на стержень, один конец которого закреплен, действует пара сил (рис. 7), лежащих в плоскости, перпендикулярной оси стержня. При кручении отдельные слои тела остаются параллельными, но поворачиваются друг относительно друга на некоторый угол. Деформация кручения представляет собой неравномерный сдвиг. Деформации кручения возникают при завинчивании гаек, при работе валов машин.

  • 11) Макро и микро дефекты
  • 12) Анизотропия металлов
  • 13.Кристаллизация металлов, кривые охлаждения, этапы процесс.
  • 14.Моно- и поликристаллы. Строение механического слитка.
  • 15.Методы изучения строения металлов: микро- и макроанализ, рентгеновский анализ, магнитный метод, ультразвуковой метод.
  • 16.Физические и химические свойства металлов. Цвет, плотность металла, температура плавления, теплопроводность, тепловое расширение, теплоемкость, электропро-водность. Магнитные свойства.
  • 17.Химические свойства.
  • 19.Упругая и пластическая деформация.
  • 20.Деформации растяжения, изгиба, кручения, среза.
  • 21.Прочность и ее показатели.
  • 22.Предел текучести. Упругость. Пластичность. Вязкость.
  • 23. Твердость, усталость, выносливость. Испыт. На ударн. Вязкость, усталостн. Прочность и ползучесть.
  • 25. Нагрев металлов при обработке давлением.
  • 26. Основы теории сплавов. Основные сведения о сплавах.
  • 27. Фазы в металлич. Сплавах. Понятие фазы. Тв. Р-ры, химич. Соедин. И механич. Смеси.
  • 31. Структурные составляющие железоуглеродистых сплавов.
  • 32. Железоуглеродистые сплавы. Выплавка стали и чугуна
  • 34. Продукция черн. Металлургии: передельн. Чугун, литейн. Чугун, домен. Ферросплавы, стальн.Слитки и прокат.
  • 35. Способы литья. Влияние компонентов на свойства чугуна.
  • 36. Белый и серый чугун. Высокопрочн. Чугун. Ковкий чугун. Чугуны со спец. Св-вами.
  • 37. Стали и их классиф. Способы получ. Стали из чугуна: конверторн.Способ, мартен. Способ, плавка в электрич. Печах.
  • 38. Влияние углерода на свойства углеродистых сталей.
  • 39. Влияние постоянных примесей на свойства углеродистых сталей.
  • 40. Углеродист. И легиров. Стали: стали углеродистые обыкнов. Качества, качеств. Углеродистые стали, углеродист. Стали спец.Назнач.
  • 41. Влияние легирующих элементов. Маркировка легированных сталей.
  • 42. Цементуемые, улучшаемые и высокопрочн. Стали.
  • 43. Углеродист. Инструментальные стали. Легированные инструментальные стали.
  • 44. Коррозионно-стойкие стали. Жаростойкие и жаропрочные стали.
  • 45. Методы получения высококачественной стали.
  • 46. Основы теории термообработки стали. Критич. Температуры. Превращ. Структуры стали при нагреве. Структурные превращения при охлаждении стали.
  • 47. Диаграмма изотермических превращений.
  • 48. Аустенитно-мартенситное превращение.
  • 49. Технология термообработки. Основные виды термообработки, технологические режимы.
  • 50. Отжиг стали I и II рода: виды отжига, режимы обработки, изменение структуры и св-в стали, прим. Виды закалки, ее режимы, хар-ки, типы охладителей, изменение структуры и св-в стали.
  • 51. Поверхностная закалка. Применение закалки.
  • 53. Дефекты при отжиге и нормализации. Дефекты при закалке.
  • 54. Термомеханич. Обработка. Новые способы термообработки (лазерная, электроннолучевая).
  • 56. Химико-термическая обработка. Азотирование.
  • 57. Поверхностное упрочнение стали.
  • 59. Цветные металлы и сплавы.
  • 60. Деформируемые алюминиевые сплавы –
  • 61. Литейные алюминиевые сплавы.
  • 62. Получение меди и ее сплавы.
  • 63. Латунь. Бронза, сплавы меди с никелем.
  • 64. Олово, свинец, цинк и их сплавы.
  • 65. Неметаллические материалы
  • 68.Основные свойства полимеров
  • 69.Номенклатура конструкционных пластмасс
  • 70.Полиолефины: полиэтилен и полипропилен.
  • 71.Поливинилхлорид.
  • 72.Полиэтилентерефталат
  • 73.Полистирол.
  • 74.Фторопласты
  • 75.Полиметилметакрилат.
  • 76.Поликарбонаты. Газонаполненные пластмассы.
  • 77.Материалы на основе древесины. Структура и свойства древесины
  • 78. Модифицирование цельной древесины. Классификация материалов на основе древесины.
  • 79.Бумага и картон.
  • 80.Минералы и материалы на их основе. Твердые и сверхтвердые материалы.
  • 81. Минеральные материалы на основе силикатов.
  • 82. Стекло и ситаллы.
  • 83. Техническая керамика
  • 84. Графит и материалы на его основе.
  • 85. Композиционные материалы. Структура и классификация.
  • 86. Перспективы использования композитов.
  • 87. Биоразлагаемые композиционные материалы на основе полимеров.
  • 66. Пластмассы. Классификация пластмасс.
  • 67. Строение и структура пластических масс
  • 19.Упругая и пластическая деформация.

    Деформация – это изменение формы и размеров тела, деформация может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. К деформациям относятся такие явления, как сдвиг, сжатие, растяжение, изгиб и кручение.Упругая деформация – это деформация, которая исчезает после снятия нагрузки. Упругая деформация не вызывает остаточных изменений в свойствах и структуре металла; под действием приложенной нагрузки происходит незначительное обратимое смещение атомов.При растяжении монокристалла возрастают расстояния между атомами, а при сжатии атомы сближаются. При смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания. После снятия нагрузки смещенные атомы из-за действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние и кристаллы приобретают первоначальные размеры форму.Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.Самое малое напряжение вызывает деформацию, причем начальные деформации являются всегда упругими и их величина находится в прямой зависимости от напряжения. Основными механическими свойствами являются прочность, пластичность, упругость.Важное значение имеет пластичность, она определяет возможность изготовления изделий различными способами обработки давлением. Эти способы основаны на пластическом деформировании металла.

    Материалы, которые имеют повышенную пластичность, менее чувствительны к концентраторам напряжений. Для этого проводят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.Физическая природа деформации металловПод действием напряжений происходит изменение формы и размеров тела. Напряжения возникают при действии на тело внешних сил растяжения, сжатия, а также в результате фазовых превращений и некоторых других физико-химических процессов, которые связанны с изменением объема. Металл, который находится в напряженном состоянии, при любом виде напряжения всегда испытывает напряжения нормальные и касательные, деформация под действием напряжений может быть упругой и пластической. Пластическая происходит под действием касательных напряжений.

    Упругая – это такая деформация, которая после прекращения действия, вызвавшего напряжение, исчезает полностью. При упругом деформировании происходит изменение расстояний между атомами в кристаллической решетке металла.С увеличением межатомных расстояний возрастают силы взаимного притяжения атомов. При снятии напряжения под действием этих сил атомы возвращаются в исходное положение. Искажение решетки исчезает, тело полностью восстанавливает свою форму и размеры. Если нормальные напряжения достигают значения сил межатомной связи, то произойдет хрупкое разрушение путем отрыва. Упругую деформацию вызывают небольшие касательные напряжения.Пластической называется деформация, остающаяся после прекращения действия вызвавших ее напряжений. При пластической деформации в кристаллической решетке металла под действием касательных напряжений происходит необратимое перемещение атомов. При небольших напряжениях атомы смещаются незначительно и после снятия напряжений возвращаются в исходное положение. При увеличении касательного напряжения наблюдается необратимое смещение атомов на параметр решетки, т. е. происходит пластическая деформация.

    При возрастании касательных напряжений выше определенной величины деформация становится необратимой. При снятии нагрузки устраняется упругая составляющая деформации. Часть деформации, которую называют пластической, остается.При пластической деформации необратимо изменяется структура металла и его свойства. Пластическая деформация осуществляется скольжением и двойникованием.Скольжение в кристаллической решетке протекает по плоскостям и направлениям с плотной упаковкой атомов, где сопротивление сдвигу наименьшее. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая. Плоскости скольжения и направления скольжения, лежащие в этих плоскостях, образуют систему скольжения. В металлах могут действовать одна или одновременно несколько систем скольжения.Металлы с кубической кристаллической решеткой (ГЦК и ОЦК) обладают высокой пластичностью, скольжение в них происходит во многих направлениях.Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой, оно осуществляется в результате перемещения в кристалле дислокаций. Перемещение дислокации в плоскости скольжения ММ через кристалл приводит к смещению соответствующей части кристалла на одно межплоскостное расстояние, при этом справа на поверхности кристалла образуется ступенька.

    Деформацию сжатия легко пронаблюдать с помощью мягкой резинки, на которой также нанесена сетка линий.

    Деформации сжатия подвергаются фундамент и стены зданий, ножки стульев и стола, бревна, распирающие грунт в рудниках.

    Деформация сдвига обусловливается двумя равными по модулю и противоположными по направлению моментами сил. При сдвиге любой мысленно выделенный в теле прямоугольный параллелепипед превращается в наклонный, равный ему по объему.

    Сдвиг возникает во всех трущихся телах как при трении покоя, так и при трении скольжения. Деформации сдвига подвергаются заклепки, скрепляющие два листа, если эти листы растягиваются. Сдвигаются и волокна бумаги при разрезании ее ножницами.

    Чтобы пронаблюдать деформацию кручения, можно взять в руки резиновый стержень, вдоль образующей которого проведена прямая линия, и повернуть его в разных направлениях. Линия примет винтовую форму.

    Деформации кручения подвергаются валы, передающие вращающий момент от двигателей к колесам автомобилей и гребным винтам теплоходов. Эту же деформацию испытывает ручка отвертки при заворачивании шурупа. Растягивание цилиндрической пружины также приводит к кручению проволоки, из которой она изготовлена.

    Рис. 7

    Все перечисленные деформации можно пронаблюдать и на специальной модели, которая представляет из себя набор расположенных параллельно друг другу деревянных пластин, сквозь которые продето несколько спиральных пружин.

    Наблюдая различные деформации можно заметить, что практически всегда они сводятся к деформациям растяжения и сжатия, поэтому дальнейшие рассуждения будут вестись на примере именно этих видов деформаций.

    Относительная деформация показывает, на сколько деформируется каждая единица начальной длины тела.

    Обычно измеряют относительную деформацию в процентах.

    При упругих деформациях внутри тела возникает механическое напряжение .

    Механическое напряжение показывает, чему равна сила упругости, приходящаяся на единицу площади деформируемого тела.

    Чтобы получить единицу механического напряжения надо в определяющее уравнение этой величины подставить единицы силы –1 Н и площади – 1 м 2 . Получаем 1 Н/м 2 . Эта единица имеет собственное название – 1 Па (паскаль).

    На участке CD удлинение тела растет практически без увеличения нагрузки. Это явление называется текучестью материала. Далее, с увеличением деформации, кривая напряжения несколько возрастает, достигая максимума в точке E . Затем напряжение резко падает и образец разрушается.

    Для выявления количественной зависимости между силой упругости, возникающей в деформируемом теле, и его геометрическими размерами, изучим более основательно упругую деформацию резинового жгута.

    Рис. 10

    В первом опыте исследуем зависимость абсолютной деформации жгута от его длины. Для этого закрепим плоский резиновый жгут в лапке штатива. Рядом расположим линейку. Подвесим к жгуту такой груз, чтобы было заметным и измеряемым его растяжение. Зафиксируем величину этого растяжения. Не изменяя площади поперечного сечения жгута и веса груза, увеличим длину жгута в два раза. Вновь зафиксируем величину его растяжения. Во втором опыте исследуем зависимость величины абсолютной деформации резинового жгута от площади его поперечного сечения.

    Для этого закрепим в лапке штатива сначала один, а затем два одинаковых, параллельно сложенных жгута. В обоих случаях подвесим к жгутам гири одинакового веса и измерим величины соответствующих растяжений.

    В третьем опыте исследуем зависимость величины абсолютной деформации резинового жгута от силы, действующей на него.

    Для этого закрепим в лапке штатива жгут, и будем подвешивать к нему грузы, увеличивая их вес и измеряя каждый раз величину растяжения жгута.

    По результатам опытов можно сделать вывод, что в пределах точности измерений, при малых деформациях, абсолютное растяжение жгута, с которым проводился эксперимент, прямо пропорционально силе, действующей на него, начальной длине жгута и обратно пропорционально площади его поперечного сечения.

    Аналогичные эксперименты, проведенные с другими телами, показывают, что найденные зависимости выполняются и для них. Кроме того, величина деформации при одной и той же нагрузке для тел одинаковой геометрической формы и размеров, но изготовленных из разных материалов, различна.

    Закон, устанавливающий связь между силами упругости, или напряжениями, возникающими в деформируемых телах, и величинами деформаций был установлен английским естествоиспытателем Робертом Гуком и носит его имя.

    Закон Гука может быть сформулирован следующим образом:

    По другому этот закон читается следующим образом.
    Механическое напряжение, возникающее в теле при его малых деформациях прямо пропорционально относительной деформации тела: σ = E ∙ ε.

    Коэффициент пропорциональности в законе Гука называется модулем упругости , или модулем Юнга .

    Модуль Юнга показывает, чему равно механическое напряжение в теле при его относительной деформации, равной единице.

    Чтобы получить единицу модуля Юнга, надо выразить его из формулы закона Гука и в полученное выражение подставить единицы соответствующих величин. Получаем 1 Па (паскаль).

    Знание деформаций, возникающих в телах при их нагрузке, позволяет проектировать различные сооружения.

    Наблюдение линий распределения механического напряжения в модели балки двутаврового сечения помогает понять, почему удаление незаштрихованной области балки прямоугольного сечения мало влияет на ее прочность.

    Коэффициент Пуассона (обозначается как {\displaystyle \nu } или {\displaystyle \mu }) - величина отношения относительного поперечного сжатия к относительному продольному растяжению. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец. Коэффициент Пуассона и модуль Юнга полностью характеризуют упругие свойства изотропного материала . Безразмерен, но может быть указан в относительных единицах: мм/мм, м/м.

    Подробности Категория: Молекулярно-кинетическая теория Опубликовано 17.11.2014 18:20 Просмотров: 9656

    Под воздействием внешних сил твёрдые тела меняют свою форму и объем, т.е. деформируются.

    В результате действия приложенных к телу сил частицы, из которых оно состоит, перемещаются. Изменяются расстояния между атомами, их взаимное расположение. Это явление называют деформацией .

    Если после прекращения действия силы тело возвращает свою первоначальную форму и объём, то такая деформация называется упругой , или обратимой . В этом случае атомы снова занимают положение, в котором они находились до того, как на тело начала действовать сила.

    Если мы сожмём резиновый мячик, он изменит форму. Но тут же восстановит её, как только мы его отпустим. Это пример упругой деформации.

    Если же в результате действия силы атомы смещаются от положений равновесия на такие расстояния, что межатомные связи на них уже не действуют, они не могут вернуться в первоначальное состояние и занимают новые положения равновесия. В этом случае в физическом теле происходят необратимые изменения.

    Сдавим кусочек пластилина. Свою первоначальную форму он не сможет вернуть, когда мы прекратим воздействовать на него. Он деформировался необратимо. Такую деформацию называют пластичной , или необратимой .

    Необратимые деформации могут также происходить постепенно с течением времени, если на тело воздействует постоянная нагрузка, или под влиянием различных факторов в нём возникает механическое напряжение. Такие деформации называются деформациями ползучести .

    Например, когда детали и узлы каких-то агрегатов во время работы испытывают серьёзные механические нагрузки, а также подвергаются значительному нагреву, в них со временем наблюдается деформация ползучести.

    Под воздействием одной и той же силы тело может испытывать упругую деформацию, если сила приложена к нему на короткое время. Но если эта же сила будет воздействовать на это же тело длительно, то деформация может стать необратимой.

    Величина механического напряжения, при которой деформация тела всё ещё будет упругой, а само тело восстановит свою форму после снятия нагрузки, называется пределом упругости . При значениях выше этого предела тело начнёт разрушаться. Но разрушить твёрдое тело не так-то просто. Оно сопротивляется. И это его свойство называется прочностью .

    Когда два автомобиля, соединённые буксировочным тросом, начинают движение, трос подвергается деформации. Он натягивается, а его длина увеличивается. А когда они останавливаются, натяжение ослабевает, и длина троса восстанавливается. Но если трос недостаточно прочный, он просто разорвётся.

    Типы деформации

    В зависимости от того, как приложена внешняя сила, различают деформации растяжения-сжатия, сдвига, изгиба, кручения.

    Деформация растяжения-сжатия

    Деформация растяжения-сжатия вызывается силами, которые приложены к концам бруса параллельно его продольной оси и направлены в разные стороны.

    Под действием внешних сил частицы твёрдого вещества, колеблющиеся относительно своего положения равновесия, смещаются. Но этому процессу пытаются помешать внутренние силы взаимодействия между частицами, старающиеся удержать их в исходном положении на определённом расстоянии друг от друга. Силы, препятствующие деформации, называются силами упругости .

    Деформацию растяжения испытывают натянутая тетива лука, буксировочный трос автомобиля при буксировке, сцепные устройства железнодорожных вагонов и др.

    Когда мы поднимается по лестнице, ступеньки под действием нашей силы тяжести деформируются. Это деформация сжатия. Такую же деформацию испытывают фундаменты зданий, колонны, стены, шест, с которым прыгает спортсмен.

    Деформация сдвига

    Если приложить внешнюю силу по касательной к поверхности бруска, нижняя часть которого закреплена, то возникает деформация сдвига . В этом случае параллельные слои тела как бы сдвигаются относительно друг друга.

    Представим себе расшатанный табурет, стоящий на полу. Приложим к нему силу по касательной к его поверхности, то есть, попросту потянем верхнюю часть табурета на себя. Все его плоскости, параллельные полу, сместятся друг относительно друга на одинаковый угол.

    Такая же деформация происходит, когда лист бумаги разрезается ножницами, пилой с острыми зубьями распиливается деревянный брус и др. Деформации сдвига подвергаются все крепёжные детали, соединяющие поверхности, - винты, гайки и др.

    Деформация изгиба

    Такая деформация возникает, если концы бруса или стержня лежат на двух опорах. В этом случае на него действуют нагрузки, перпендикулярные его продольной оси.

    Деформацию изгиба испытывают все горизонтальные поверхности, положенные на вертикальные опоры. Самый простой пример - линейка, лежащая на двух книгах одинаковой толщины. Когда мы поставим на неё сверху что-то тяжёлое, она прогнётся. Точно так же прогибается деревянный мостик, перекинутый через ручей, когда мы идём по нему.

    Деформация кручения

    Кручение возникает в теле, если приложить пару сил к его поперечному сечению. В этом случае поперечные сечения будут поворачиваться вокруг оси тела и относительно друг друга. Такую деформацию наблюдают у вращающихся валов машин. Если вручную отжимать (выкручивать) мокрое бельё, то оно также будет подвергаться деформации кручения.

    Закон Гука

    Наблюдения за различными видами деформации показали, что величина деформации тела зависит от механического напряжения, возникающего под действием приложенных к телу сил.

    Эту зависимость описывает закон, открытый в 1660 г. английским учёным Робертом Гуком , которого называют одним из отцов экспериментальной физики.

    Виды деформации удобно рассматривать на модели бруса. Это тело, один из трёх размеров которого (ширина, высота или длина), гораздо больше двух других. Иногда вместо термина «брус» употребляют термин «стержень». У стержня длина намного превышает его ширину и высоту.

    Рассмотрим эту зависимость для деформации растяжения-сжатия.

    Предположим, что стержень первоначально имеет длину L . Под действием внешних сил его длина изменится на величину ∆l . Она называется абсолютным удлинением (сжатием) стержня .

    Для деформации растяжения-сжатия закон Гука имеет вид:

    F - сила, сжимающая или растягивающая стержень; k - коэффициент упругости.

    Сила упругости прямо пропорциональна удлинению тела до некого предельного значения.

    Е - модуль упругости первого рода или модуль Юнга . Его величина зависит от свойств материала. Это теоретическая величина, введённая для характеристики упругих свойств тел.

    S - площадь поперечного сечения стержня.

    Отношение абсолютного удлинения к первоначальной длине стержня называют относительным удлинением или относительной деформацией .

    При растяжении его величина имеет положительное значение, а при сжатии отрицательное.

    Отношение модуля внешней силы к площади поперечного сечения стержня называется механическим напряжением .

    Тогда закон Гука для относительных величин будет выглядеть так:

    Напряжение σ прямо пропорционально относительной деформации ε .

    Считается, что сила, стремящаяся удлинить стержень, является положительной (F ˃ 0 ), а сила, укорачивающая его, имеет отрицательное значение (F ˂ 0 ).

    Измерение деформации

    При проектировании и эксплуатации различных механизмов, технических объектов, зданий, мостов и других инженерных сооружений очень важно знать величину деформации материалов.

    Так как упругие деформации имеют маленькую величину, то измерения должны проводиться с очень высокой точностью. Для этого используют приборы, называемые тензометрами .

    Тензометр состоит из тензометрического датчика и индикаторов. В него также может быть включено регистрирующее устройство.

    В зависимости от принципа действия тензометры бывают оптические, пневматические, акустические, электрические и рентгеновские.

    В основу оптических тензометров положено измерение деформации нити из оптоволокна, приклеенной к объекту исследования. Пневматические тензометры фиксируют изменение давления при деформации. В акустических тензометрах с помощью пьезоэлектрических датчиков проводятся измерения величин, на которые изменяются скорость звука и акустическое затухание при деформации. Электрические тензометры вычисляют деформацию на основе изменений электрического сопротивления. Рентгеновские определяют изменение межатомных расстояний в кристаллической решётке исследуемых металлов.

    Вплоть до 80-х годов ХХ века сигналы датчиков регистрировались самописцами на обыкновенной бумажной ленте. Но когда появились компьютеры и начали бурно развиваться современные технологии, стало возможным наблюдать деформации на экранах мониторов и даже подавать управляющие сигналы, позволяющие изменить режим работы тестируемых объектов.

    При действии на тело внешних сил появляются деформации, размер и форма тела изменяются. В теле, которое подвергается деформации, возникают силы упругости, которые уравновешивают внешние силы.

    Виды деформации. Упругие и неупругие деформации

    Деформации можно разделить на упругие и неупругие. Упругой называют деформацию, которая исчезает при прекращении действия деформирующего воздействия. Деформация перестает быть упругой, если внешняя сила становится больше определенной величины, которая носит название предела упругости. При таком виде деформации происходит возврат частиц из новых положений равновесия в кристаллической решетке в старые. Тело полностью восстанавливает свои размеры и форму после снятия нагрузки.

    Неупругие деформации твердого тела называют пластическими. При пластической деформации происходит необратимая перестройка кристаллической решетки.

    Закон Гука

    Английский ученый Р. Гук установил, что при упругих деформациях удлинение деформированной пружины (x) прямо пропорционально приложенной к ней внешней силе (F). Этот закон можно записать как:

    где - проекция силы на ось X; x- удлинение пружины по оси X; k - коэффициент упругости пружины (жесткость пружины). Если использовать понятие силы упругости () для деформированной пружины, то закон Гука записывают как:

    где - проекция силы упругости на ось X. Жесткость пружины - это величина, зависящая от материала, размеров витка пружины и ее длины.

    При деформировании однородных стержней растяжением или односторонним сжатием, они ведут себя как пружины. Это означает, что для них при небольших деформациях выполняется закон Гука. Упругие силы в стержне обычно описывают при помощи напряжения . Напряжение - это физическая величина равная модулю силы упругости на единицу площади сечения стержня. При этом считают, что сила распределяется равномерно по сечению и она перпендикулярна поверхности сечения.

    Title="Rendered by QuickLaTeX.com" height="12" width="45" style="vertical-align: 0px;">, если происходит растяжение и при сжатии. Напряжение называют еще нормальным. Выделяют тангенциальное напряжение , которое равно:

    где — сила упругости, которая действует вдоль слоя тела; S - площадь рассматриваемого слоя.

    Изменение длины стержня () равно:

    где E - модуль Юнга; l - длина стержня. Модуль Юнга характеризует упругие свойства материала.

    Растяжение (сжатие), сдвиг, кручение

    Одностороннее растяжение заключается в увеличении длины тела, при воздействии силы растяжения. Мерой такого вида деформации служит величина относительного удлинения, например для стержня ().

    Деформация всестороннего растяжения (сжатия) проявляется в изменении (увеличении или уменьшении) объема тела. При этом форма тела не изменяется. Растягивающие (сжимающие) силы равномерно распределяются по всей поверхности тела. Характеристикой, такого вида деформации, является относительное изменение объема тела ().

    И так, мы немного рассмотрели деформацию растяжения (сжатия), кроме этого выделяют сдвиг, кручение.

    Сдвиг - это вид деформации, при которой плоские слои твердого тела смещены параллельно друг другу. При этом виде деформации слои не изменяют свою форму и размер. Мерой данной деформации служит угол сдвига () или величина сдвига () (смещение одного из оснований тела). Закон Гука для упругой деформации сдвига записывают как:

    где G - модуль поперечной упругости (модуль сдвига), h — толщина деформируемого слоя; - угол сдвига.

    Деформация кручения состоит в относительном повороте параллельных друг другу сечений, перпендикулярных оси образца. Момент сил (M), который закручивает однородный круглый стержень на угол , равен:

    где C - постоянная кручения.

    В теории упругости доказано, что все виды упругой деформации могут сводиться к деформациям растяжения или сжатия, которые происходят в один момент времени.

    Примеры решения задач

    ПРИМЕР 1

    Задание Каково напряжение, которое возникает в стальной нити круглого сечения, если к одному из ее концов подвесили груз массой кг. Диаметр подвеса равен м.

    Решение Сила тяжести (), приложенная к грузу вызывает возникновение силы упругости (), которая приложена к подвесу. По модулю эти силы равны:

    Площадь поперечного сечения подвеса равна площади круга:

    По определению натяжение равно:

    Из контекста задачи ясно, что сила упругости перпендикулярная поверхности сечения нити, используя формулы (1.1), (1.2) и (1.3), получим:

    Вычислим искомую величину напряжения: