Кислую среду губительную для микробов. Гнилостные бактерии (Bacillus, Pseudomonas)

Гнилостные процессы являются неотъемлемой частью круговорота веществ на планете. И происходит он непрерывно благодаря крошечным микроорганизмам. Именно гнилостные бактерии разлагают останки животных, удобряют почву. Конечно, не все так радужно, потому что микроорганизмы способны непоправимо испортить продукты в холодильнике или, того хуже, вызвать отравление и дисбактериоз кишечника.

Гниение – это разложение белковых соединений, которые входят в состав растительных и животных организмов. В процессе из сложных органических веществ образуются минеральные соединения:

  • сероводород;
  • углекислый газ;
  • аммиак;
  • метан;
  • вода.

Гниение всегда сопровождается неприятным запахом. Чем интенсивнее «душок», тем дальше зашел процесс разложения. Чего стоит «аромат», который издают останки дохлой кошки в дальнем углу двора.

Важным фактором для развития микроорганизмов в природе является тип питания. Гнилостные бактерии питаются готовыми органическими веществами, поэтому их называют гетеротрофы.

Самая благоприятная температура для гниения колеблется в пределах 25-35°C. Если температурную планку снизить до 4-6°C, то жизнедеятельность гнилостных бактерий можно значительно, но не полностью, приостановить. Вызвать гибель микроорганизмов способно только повышение температуры в пределах 100°C.

А вот при очень низких температурах гниение полностью останавливается. Ученые не раз находили в насквозь промерзшей земле Крайнего Севера тела древних людей и мамонтов, которые замечательно сохранились, несмотря на прошедшие тысячелетия.

Чистильщики природы

В природе гнилостные бактерии играют роль санитаров. По всему миру собирается огромное количество органических отходов:

  • останки животных;
  • опавшие листья;
  • поваленные деревья;
  • сломанные ветви;
  • солома.

Что бы случилось с жителями Земли, не будь маленьких чистильщиков? Планета просто превратилась бы в свалку, непригодную для жизни. Но гнилостные прокариоты честно выполняют свою работу в природе, превращая мертвую органику в перегной. Он не только богат полезными веществами, но и склеивает комочки земли, придавая им прочность. Поэтому почва не размывается водой, а, наоборот, задерживается в ней. Растения получают живительную влагу и растворенное в воде питание.

Помощники человека

Человек давно прибегает к помощи гнилостных бактерий в сельском хозяйстве. Без них не вырастить богатый урожай зерновых, не развести коз и овец, не получить молока.

Но интересно, что гнилостные процессы используют и в техническом производстве. Например, при выделке шкур их сознательно подвергают гниению. Обработанные таким образом шкуры легко очистить от шерсти, выдубить и размягчить.

Но гнилостные микроорганизмы могут нанести и значительный вред в хозяйстве. Микробы любят полакомиться человеческой пищей. А это значит, что продукты питания попросту будут испорчены. Употребление их становится опасным для здоровья, потому что может привести к сильным отравлениям, которые потребуют долгого лечения.

Обезопасить свои продуктовые запасы можно с помощью:

  • замораживания;
  • высушивания;
  • пастеризации.

Организм человека в опасности

Процесс гниения, как это ни печально, затрагивает организм человека изнутри. Центром локализации гнилостных бактерий является кишечник. Именно там непереваренная пища разлагается и выделяет токсины. Печень и почки, как могут, сдерживают напор токсичных веществ. Но они не способны подчас справиться с перегрузками, и тогда начинается разлад в работе внутренних органов, требующий незамедлительного лечения.

Первой под прицел попадает центральная нервная система. Люди часто жалуются на такие типы недомогания:

  • раздражительность;
  • головная боль;
  • постоянная усталость.

Постоянное отравление организма токсинами из кишечника значительно ускоряет старение. Многие заболевания значительно «молодеют» из-за постоянного поражения ядовитыми веществами печени и почек.

Врачи многие десятилетия вели нещадную борьбу с гнилостными бактериями в кишечнике самыми неординарными методами лечения. Например, больным делали операцию по удалению толстого кишечника. Конечно, никакого эффекта такой тип процедуры не давал, а вот осложнений возникало немало.

Современная наука пришла к заключению, что обмен веществ в кишечнике реально восстановить с помощью молочнокислых бактерий. Считается, что активней всего борется с ними ацидофильная палочка.

Поэтому сопровождать лечение и профилактику дисбактериоза кишечника обязательно должны кисломолочные продукты:

  • кефир;
  • ацидофильное молоко;
  • ацидофильная простокваша;
  • ацидофильная паста.

Приготовить их несложно в домашних условиях из пастеризованного молока и ацидофильной закваски, которую можно приобрести в аптеке. В состав закваски входят высушенные ацидофильные бактерии, упакованные в герметичную тару.

Фармацевтическая промышленность предлагает свою продукцию для лечения дисбактериоза кишечника. В аптечных сетях появились препараты на основе бифидобактерий. Они комплексно действуют на весь организм, и не только подавляют гнилостные микробы, но и улучшают обмен веществ, способствуют синтезу витаминов, заживляют язвы в желудке и кишечнике.

Можно ли пить молоко?

Споры вокруг целесообразности потребления молока учеными ведутся уже много лет. Лучшие умы человечества разобщились на противников и защитников этого продукта, но к единому мнению так и не пришли.

Человеческий организм с самого рождения запрограммирован на потребление молока. Это основной продукт питания для деток первого года жизни. Но со временем в организме происходят изменения, и он теряет способность переваривать многие компоненты молока.

Если побаловать себя очень хочется, то придется учесть, что молоко является самостоятельным блюдом. Привычное с детства лакомство, молоко со сладкой булочкой или свежим хлебом, к сожалению, взрослым недоступно. Попадая в кислую среду желудка, молоко моментально створаживается, обволакивает стенки и не позволяет остальной пище перевариваться в течение 2 часов. Это провоцирует гниение, образование газов и токсинов, а впоследствии проблемы в работе кишечника и длительное лечение.

Стакан молока можно выпить либо за час до еды, либо через 2 часа после нее. Но лучше заменить его кисломолочными продуктами, и тогда все встанет на свои места.

13 апреля 2013 г.: Мы часто подвергаемся воздействию бактерий, находящихся в пище, которые могут вызвать отравление, но не всегда заболеваем. Почему же так случается?

Профессор Колин Хилл представил свою работу в Обществе общей микробиологии на осеннем собрании в Ноттингеме. В ней описывается, как бактерии используют различные уловки для выживания внутри тела, что, в свою очередь, помогает объяснить, почему пищевое отравление может быть таким непредсказуемым.

Одна из самых больших проблем для бактерий - это кислота. Кислотная среда в желудке и кишке убивает большинство микробов, поступающих с продуктами питания.

Исследовательская группа профессора Хилла из Университета Корка обнаружила, что бактерия Listeria, которая может быть найдена в мягких сырах и охлажденных, готовых к употреблению продуктах, выживает в суровых условиях, путем использования ключевых элементов пищи. Сохранившаяся Listeria может стать причиной серьезного и порой смертельного , в частности, для пожилых и беременных женщин.

Некоторые компоненты пиши, такие как аминокислоты и глутамат, могут содействовать бактериям, нейтрализуя кислоты и позволяя бактериям проходить через желудок невредимыми. Профессор Хилл объясняет причину этого: «Люди, которые потребляют продукты питания, загрязненные бактериями Listeria, а также с высоким содержанием глутамата, такие как мягкие сыры и мясные продукты, имеют высокую предрасположенность к развитию серьезного заболевания по сравнению с людьми, потребляющими такое же количество бактерий, но в пище с низким содержанием глутамата. Конечно, все осложняется тем, что еда с низким содержанием глутамата может употребляться в смешении с высокосодержащими глутамат продуктами, такими, как томатный сок, который также может увеличить риск инфицирования».

Listeria также может воспользоваться условиями хранения пищи для выживания. «Бактерии, которые подвергаются воздействию низкого pH (кислой среды) до попадания в тело, могут адаптироваться и стать более кислотоустойчивыми, и поэтому они лучше приспособлены для борьбы с кислотной средой в организме. Например, Listeria, естественно загрязняющая кислые продукты, такие как сыр, более вероятно может быть причиной инфекции, чем та, которая находится в воде с нейтральным pH.

Профессор Хилл объясняет, как работа его группы поможет снизить заболеваемость инфекцией Listeria. «За последнее десятилетие в Европе количество случаев листериоза увеличилось вдвое. Причиной того стала хорошая приспосабливаемость бактерий в пище и теле. Наши исследования показывают, что потребление Listeria в одном продукте может быть безопасно, в то время как потреблении того же количества в другой пище может закончиться летально.»

«Пониманием роли пищевой среды мы способны распознать и устранить продукты высокого риска из питания восприимчивых людей.»

В группу гнилостных бактерий входят микроорганизмы, вызыва­ющие глубокий распад белков. При этом образуется ряд веществ, обладающих неприятным запахом, вкусом, нередко и ядовитыми свой­ствами. Гнилостные бактерии могут быть как аэробы, так и анаэро­бы, споровые и бесспоровые.

К факультативно аэробным бесспоровым гнилостным бактериям часто встречающимся в молоке, относятся грамотрицательные па­лочки Proteus vulgaris (протей), способные активно пептонизировать молоко с выделением газа. При развитии этих микроорганизмов в молоке кислотность его вначале несколько повышается (вследствие образования жирных кислот), а затем снижается в результате на­копления щелочных продуктов. Бесспоровые бактерии, например Proteus vulgaris, могут попадать в молоко с оборудования, из воды и других источников. При пастеризации молока Proteus vulgaris по­гибают.

К аэробным споровым бактериям относятся Вас. subtilis (сеннаяая палочка), Вас. mesentericus (картофельная палочка), Вас. mycoides, Вас. megatherium и пр. Все они подвижны, красятся по Граму положительно, быстро развиваются в молоке, активно разлагая белки. При этом сна­чала молоко свертывается без существенного повышения кислотно­сти, затем с поверхности сгустка наступает пептонизация молока. У некоторых споровых палочек (например, сенной) пептонизацпя молока начинается без предварительного свертывания казеина. Из анаэробных споровых гнилостных бактерий в молоке встре­чаются Вас. putrificus и Вас. polymyxa.

Вас. putrificus - подвижная палочка, разлагающая белки с обиль­ным образованием газов (аммиака, углекислоты, водорода, серово­дорода), Вас. polymyxa - подвижная палочка, образующая в молоке газ, кислоты (уксусную, муравьиную), этиловый и бутиловый спир­ты и другие продукты.

Высокая чувствительность к понижению реакции среды харак­терна для всех гнилостных бактерий. Этой особенностью определя­ются крайне ограниченные возможности для развития данной груп­пы бактерий при производстве кисломолочных продуктов. Очевидно, что во всех случаях, когда молочнокислый процесс развивается ак­тивно, жизнедеятельность гнилостных бактерий прекращается. В производстве кисломолочных продуктов развитие гнилостных бактерий возможно только в исключительных случаях (в результа­те развития бактериофага полностью пли в значительной мере ос­тановлен молочнокислый процесс, утрачена активность закваски и т. д.). Споры многих гнилостных бактерий могут содержаться в пасте­ризованном молоке. Однако практически они не играют роли при производстве и хранении этого продукта. Это объясняется тем, что основную остаточную микрофлору после пастеризации составляют молочнокислые бактерии, они же обсеменяют молоко при розливе, поэтому на фоне развития (хотя и слабого, из-за низких температур

хранения) молочнокислого процесса возможность размножения спо­ровых микроорганизмов в пастеризованном молоке ничтожна. При производстве же и хранении стерилизованного молока спо­ровые бактерии играют немаловажную роль. Даже незначительные нарушения режимов стерилизации могут привести к попаданию спор в стерилизованное молоко и вызвать в последующем его пор­чу при хранении.

ДРОЖЖИ

В основу классификации дрожжей положены различия в харак­тере их вегетативного размножения (деление, почкование). спорообразования, а также морфологические и физиологические признаки.

По способности к спорообразованию дрожжи делят на спорообразующие и неспорообразующие. В кисломолочных продуктах из спорообразующих встречаются дрожжи родов Saccharomyces, Zygosacc-haromyces, Fabospora и Debaromyces, из неспоровых - родов Torulopsis it Candida. С. А.

Королев (1932) разделил дрожжи, встречающиеся в молоч­ных продуктах, по их биохимическим свойствам на три группы.

Первая группа - дрожжи, не способные к спиртовому брожению, хотя и потребляющие некоторые углеводы путем непосредственного окисления; к ним относятся виды Mycoderma, цветные бесспоровые дрожжи Tornla.

Вторая группа - дрожжи, не сбраживающие лактозу, но сбражи­вающие другие сахара; могут развиваться лишь в совместной культу­ре с микроорганизмами, обладающими ферментом лактазой, гпдролизующей молочный сахар на моносахара; к ним относятся отдель­ные виды дрожжей рода Saccharomyces. Как показали исследования В. И. Кудрявцева (1954) и A.M. Скородумовой (1969), в кисломолочных продуктах, приготовленных на естественных заквасках, основ­ными представителями этого рода являются дрожжи вида Sacch. cartilaginosus, сбраживающие мальтозу и галактозу. По мнению В. И. Кудрявцева, дрожжи этой группы могут положительно влиять на вкус и аромат кисломолочных продуктов, однако при чрезмерном их развитии возникает порок - вспучивание. Они относятся к так называемым диким дрожжам и при производстве кисломолочных продуктов их не применяют. Однако возможно, что среди дрожжей этой группы могут быть найдены производственно-ценные куль­туры.

Третья группа - дрожжи, сбражнвающпе лактозу. Исследования А. М. Скородумовой (1969) показали, что среди дрожжей, выделен­ных из кисломолочных продуктов (приготовленных на естественной закваске), число дрожжей, самостоятельно сбраживающих лактозу, сравнительно невелико - из 150 штаммов - 32 (21%). Наибольший процент дрожжей, сбражпвающих лактозу, был выделен из кефир ных грибков и закваски (34,1%). Дрожжи, сбраживающие лактозу, были идентифицированы А. М. Скородумовой как Fabospora fragilis, Saccharomyces lactis, реже Zygosaccharomyces lactis. Способностью сбраживать лактозу обладают также некоторые ви­ды Candida и Torulopsis - Candida pseudotropicalis var. lactosa, Torulopsis kefir, Torylopsis sphaerica, выделенные из кефир­ного грибка (В. И. Буканова, 1955).

Исследования, проводившиеся в Японии Т. Наканиши и Дж. Араи (1968, 1969), показали также, что наиболее распространенны­ми видами лактозосбраживающих дрожжей, выделенных из сырого молока, являются Saccharomyces lactis, Torulopsis versatilis, Toru­lopsis sphaerica, Candida pseudotropicalis.

Для установления отношения дрожжей к сахарам культуры па­раллельно высевают в молочно-пептонную сыворотку, содержащую только лактозу, и на сусло, содержащее мальтозу. После выдержки при оптимальной температуре отмечают наличие пли отсутствие га­за.

Оптимальная температура развития дрожжей 25-30° С, что следует учитывать при выборе температуры для созревания продук­тов, в состав микрофлоры которых они входят. По данным В. II. Букановой (1955) основным фактором, регулирующим развитие дрож­жей разных видов в кефире, является температура. Так, повышен­ная температура (30-32° С) стимулирует развитие Torulopsis sphaerica п дрожжей, не сбраживающих лактозу. Дрожжи, сбраживающие лактозу, достаточно хорошо развиваются и при 18-20° С, однако повышение температуры до 25 и 30° С, как правило, стимулирует их размножение.

Большинство дрожжей предпочитает для своего развития кислую реакцию среды. Следовательно, в кисломолочных продуктах условия для них благоприятны.

Дрожжи очень широко распространены в кисломолочных продук­тах и могут быть обнаружены почти в любом образце продукта, при­готовленного на естественных заквасках. Однако дрожжи развива­ются гораздо медленнее, чем молочнокислые бактерии, поэтому в кис­ломолочных продуктах они обнаруживаются в меньшем количестве, чем молочнокислые бактерии.

Роль дрожжей и производстве кисломолочных продуктов исклю­чительно велика. Обычно дрожжи рассматривают главным образом как возбудителей спиртового брожения. Но эта функция, по-види­мому, не основная. Дрожжи активизируют развитие молочнокис­лых бактерий, витаминизируют продукты (С. Аскалонов, 1957). Дрожжи, сбраживающие лактозу и другие сахара, способны выра­батывать антибиотические вещества, активные против туберкулез­ной палочки и других микроорганизмов (А. М. Скородумова, 1951, 1954; В. И. Буканова, 1955).

Интенсивное развитие дрожжей незаквасочного происхождения нередко приводит к вспучиванию и изменению вкуса таких продук­тов, как сметана, творог и сладкие творожные изделия. Излишнее развитие дрожжей, содержащихся в кефирной закваске при наруше­нии технологических режимов, также может вызвать газообразова­ние в кефире (“глазки”) и даже его вспучивание.

Краткая характеристика микроорганизмов кормов

Микробиологические процессы, происходящие при силосовании.

Количественный и качественный (видовой) состав сообщества микроорганизмов, участвующих в созревании силоса зависит от ботанического состава зеленой массы, содержания в ней растворимых углеводов и протеина, влажности исходной массы. Так, например, сырье богатое белками (клевер, люцерна, донник, эспарцет) в отличие от сырья, богатого углеводами (кукуруза, просо и др.), силосуется при длительном участии в процессах гнилостных бактерий и при замедленном нарастании численности молочнокислых бактерий.

После закладки растительной массы в хранилище наблюдается массовое размножение микроорганизмов. Их общее количество уже через 2-9 суток может значительно превышать количество микроорганизмов, попадающих с растительной массой.

При всех способах силосования в созревании силосов участвует сообщество микроорганизмов, состоящее из двух диаметрально противоположных групп по характеру воздействия на растительный материал: вредные (нежелательные) и полезные (желательные) группы.

В процессе силосования происходит замена гнилостных микроорганизмов молочнокислыми, которые вследствие образования молочной и частично уксусной кислот снижают рН корма до 4,0-4,2 и тем самым создают неблагоприятные условия для развития гнилостных микроорганизмов (табл.2).

Условия для существования (потребность в кислороде, отношение к температуре, активной кислотности и т.д.) для различных групп микроорганизмов неодинаковые. С точки зрения потребности в кислороде различают условно три группы микроорганизмов:

· размножающиеся только при полном отсутствии кислорода (облигатные анаэробы);

· размножающиеся только при наличии кислорода (облигатные аэробы);

· размножающиеся как при наличии кислорода, так и без него (факультативные анаэробы).

Чтобы ограничить деятельность вредных микроорганизмов и стимулировать размножение полезных бактерий следует знать особенности отдельных групп микроорганизмов.

Молочнокислые бактерии

Среди разнообразной эпифитной микрофлоры растений содержится лишь сравнительно небольшое количество неспорообразующих факультативных анаэробов, гомо, - гетероферментативных молочнокислых бактерий.

Основным свойством молочнокислых бактерий, по которым их объединяют в отдельную обширную группу микроорганизмов, является способность образовывать в качестве продукта брожения молочную кислоту:

Она создает в среде активную кислотность (рН 4,2 и ниже), неблагоприятно действующую на нежелательные микроорганизмы. Помимо этого, значение молочнокислых бактерий заключается в бактерицидном действии недиссоциированной молекулы молочной кислоты и способности их образовывать специфические антибиотические и др. биологически активные вещества.

Молочнокислые бактерии отличаются следующими особенностями, важными для силосования:

1. Нуждаются для обмена веществ, главным образом, в углеводах (сахар, реже крахмал);

2. Белок не разлагают (некоторые виды в ничтожном количестве);

3. Они факультативные анаэробы, т.е. развиваются без кислорода и при наличии кислорода;

4. Температурный оптимум чаще всего составляет 30 0 С (мезофильные молочнокислые бактерии), но у некоторых форм он достигает 60 0 С (термофильные молочнокислые бактерии);

5. Выдерживают кислотность до рН 3,0;

6. Могут размножаться в силосе с очень высоким содержанием сухого вещества;

7. Легко переносят высокие концентрации NаClи обладают устойчивостью к некоторым другим химическим препаратам;

8. Помимо молочной кислоты, которая играет решающую роль в подавлении нежелательных типов брожения, молочнокислые бактерии выделяют биологически активные вещества (витамины группы В и др.). Они обладают профилактическими (или лечебными) свойствами, стимулируют рост и развитие с.-х. животных.

При благоприятных условиях (достаточное содержание в исходном растительном материале водорастворимых углеводов, анаробиоз) молочнокислое брожение заканчивается всего за несколько дней и рН достигает оптимального значения – 4,0-4,2.

Маслянокислые бактерии

Маслянокислые бактерии (Clostridiumsp.) - спорообразующие, подвижные, палочковидные анаэробные маслянокислые бактерии (клостридии) широко распространены в почве. Присутствие клостридий в силосе является результатом загрязнения почвой, поскольку их численность на зеленой массе кормовых культур, как правило, очень низка. Почти сразу же после заполнения хранилища зеленой массой маслянокислые бактерии начинают интенсивно размножаться вместе с молочнокислыми в первые несколько дней.

Высокая влажность растений, обуславливающаяся наличием в измельченной силосной массе клеточного сока растений и анаэробные условия в силосохранилище – идеальные условия для роста клостридий. Поэтому уже к концу первых суток их численность возрастает и в дальнейшем зависит от интенсивности молочнокислого брожения. В случае слабого накопления молочной кислоты и снижения рН маслянокислые бактерии энергично размножаются и число их достигает максимума (10 3 -10 7 клеток/г) в несколько суток.

По мере увеличения влажности (при содержании в силосной массе 15% сухого вещества) чувствительность клостридий к кислотности среды снижается даже при рН 4,0 (4)

Для возбудителей маслянокислого брожения характерны следующие основные физиолого-биохимические особенности:

1. Маслянокислые бактерии, являясь облигатными анаэробами, начинают развиваться в условиях сильного уплотнения силосной массы;

2. Разлагая сахар, они конкурируют с молочнокислыми бактериями, а используя белки и молочную кислоту, приводят к образованию сильнощелочных продуктов распада белка (аммиака) и токсичных аминов;

3. Маслянокислые бактерии нуждаются для своего развития во влажном растительном сырье и при высокой влажности исходной массы имеют наибольшие шансы подавить все остальные типы брожения;

4. Оптимальные температуры для маслянокислых бактерий колеблются от 35-40 0 С, но их споры переносят более высокие температуры;

5. Чувствительны к кислотности и прекращают свою деятельность при рН ниже 4,2.

Эффективными мерами против возбудителей маслянокислого брожения являются – быстрое подкисление растительной массы, подвяливание влажных растений. Существуют биопрепараты на основе молочнокислых бактерий для активации молочнокислого брожения в силосе. Кроме того, разработаны химические вещества, которые оказывают бактерицидное (подавляющее) и бактериостатическое (тормозящее) действие на маслянокислые бактерии.

Гнилостные бактерии (Bacillus, Pseudomonas).

Представители рода бацилл (Bac.mesentericus, Вac.megatherium) сходны по своим физиолого-биохимическим особенностям с представителями клостридий, но в отличие от них способны развиваться в аэробных условиях. Поэтому они одними из первых включаются в процесс ферментации. Эти микроорганизмы являются активными продуцентами разнообразных гидролитических ферментов. Они используют в качестве питательных веществ различные белки, углеводы (глюкозу, сахарозу, мальтозу и др.) и органические кислоты.

Важным свойством гнилостных бактерий, которое имеет значение для протекающих в кормовой массе процессов, является их способность к спорообразованию.

О основными особенностями для возбудителей гнилостного брожения являются следующие:

1. Они не могут существовать без кислорода, поэтому в герметичном хранилище гниение невозможно;

2. Гнилостные бактерии разлагают прежде всего белок (до аммиака и токсичных аминов), а также углеводы и молочную кислоту (до газообразных продуктов);

3. Гнилостные бактерии размножаются при рН выше 5,5. При медленном подкислении корма значительная часть белкового азота переходит в аминную и аммиачную формы;

4. Важным свойством гнилостных бактерий является их способность к спорообразованию. В случае длительного хранения и скармливания силоса, в котором дрожжи и маслянокислые бактерии разложат большую часть молочной кислоты или она будет нейтрализована продуктами разложения белка, гнилостные бактерии, развиваясь из спор, могут начать свою разрушительную деятельность.

Главным условием ограничения существования гнилостных бактерий является быстрое заполнение, хорошая трамбовка, надежная герметизация силосохранилища. Потери, вызываемые возбудителями гнилостного брожения, можно снизить при помощи химических консервантов и биопрепаратов.

Плесневые грибы и дрожжи.

Оба эти типа микроорганизмов относятся к грибам и являются весьма нежелательными представителями микрофлоры силоса. Они легко переносят кислую реакцию среды (рН 3,2 и ниже). Поскольку плесневые грибы (Penicillium,Aspergillusи др.) являются облигатными аэробами, то они начинают развиваться сразу после заполнения хранилища, но с исчезновением кислорода развитие их прекращается. В правильно заполненном силосохранилище с достаточной степенью уплотнения и герметизацией это происходит уже через несколько часов. Если в силосе есть очаги плесени, значит вытеснение воздуха было недостаточным или герметизация была неполной.

Дрожжи (Hansenula,Pichia,Candida,Saccharomyces, Тorulopsis) развиваются непосредственно после заполнения хранилищ, т.к. они являются факультативными анаэробами и могут развиваться при незначительных количествах кислорода в силосе. Кроме того они обладают высокой устойчивостью к температурному фактору и низкому рН.

Дрожжевые грибы прекращают свое развитие только при полном отсутствии кислорода в силосохранилище, но небольшие их количества обнаруживаются в поверхностных слоях силоса.

В анаэробных условиях они используют простые сахара (глюкозу, фруктозу, маннозу, сахарозу, галактозу, рафинозу, мальтозу, декстрины) по гликолитическому пути и развиваются за счет окисления сахаров и органических кислот:

Полное использование последних приводит к тому, что кислая среда силоса сменяется щелочной, создаются благоприятные условия для развития маслянокислой и гнилостной микрофлоры.

В результате этого снижается качество силоса из кукурузы, а также из «глубоко» провяленных трав, т.е. кормов с наилучшими показателями по продуктам брожения.

Таким образом, для плесневых грибов и дрожжей свойственно:

1. Плесневые грибы и дрожжи относятся к нежелательным представителям аэробной микрофлоры;

2. Негативное действие плесневых грибов и дрожжей в том, что они вызывают окислительный распад углеводов, белков и органических кислот (в т.ч. молочной);

3. Легко переносят кислую реакцию среды (рН ниже 3,0 и даже 1,2);

4. Плесневые грибы выделяют опасные для здоровья животных и людей токсины;

5. Дрожжи, являясь возбудителями вторичных процессов брожения, приводят к аэробной нестабильности силосов.

Ограничение доступа воздуха путем быстрой закладки, трамбовки и герметизации, правильная выемка и скармливание – решающие факторы, ограничивающие развитие плесневых грибов и дрожжей. Для подавления развития возбудителей вторичного брожения рекомендованы препараты с фунгистатической (фунгицидной) активностью (приложение 2).


Похожая информация.


«Любая болезнь - это загрязнение и отравление среды обитания клеток организма и, наоборот, любое загрязнение среды обитания клеток - болезнь» Ю.В. Хмелевский

Существует такая наука - ЭНДОЭКОЛОГИЯ - это наука об экологии внутренней среды организма, об отравлении межклеточного пространства и возникающих в результате этого заболеваниях. Существенной частью этой науки является разработка методов эндоэкологической реабилитации, то есть, способах очищения организма от шлаков и эндотоксинов.

ШЛАКИ? Так часто употребляемое в разговорах о здоровом образе жизни слово… Что же все-таки это такое? В это понятие включают группу эндотоксинов и группу экзотоксинов. Эндотоксины — это естественные метаболиты, то есть, продукты обмена веществ, которые образуются в самом организме и должны быть выделены из него с помощью естественных дренажных механизмов с потом, мочой, калом, слизью и т.д. А экзотоксины - поступают извне, через кожу и слизистые оболочки дыхательного и пищеварительного тракта, а так же - с лекарствами внутривенно, внутримышечно и т.д.

Одним из важнейших показателей эндоэкологического состояния организма является хорошо известное всем нам из школьного курса химии кислотно-щелочное состояние, определяемое с помощью рН - показателя кислотности среды.

У здорового человека рН крови равен 7,85 - 7,45, то есть кровь имеет слабо щелочную реакцию. В большинстве клеток организма рН не превышает 7,0 - 7,2. рН крови относится к жестким биологическим константам, сдвиг его на 0,4 - 0,5, особенно, в кислую сторону, приводит к тяжелым нарушениям функций организма.

В экспериментах на микроорганизмах это видно особенно наглядно. Например, культивация стрептококков требует рН=5.43, а вот при малейшем изменении среды, например, при рН=6.46, происходит рост других микроорганизмов, а стрептококки просто гибнут. Эти идеи выдвинул и неоднократно подтвердил еще профессор Берлинского Университета Шарите Гюнтер Эндерляйн (1872 — 1968), развивая свою хорошо известную микробиологическую концепцию.

Чаще всего проблема заключается в так называемой закисленности и требует проведения мероприятий по ощелачиванию организма.

Однако, нельзя считать правильным, что кислая среда - это всегда плохо. А щелочная - это всегда хорошо. Это не так. Среда может быть физиологически нормальной или патологической. Состояние закисленности организма в медицине принято называть АЦИДОЗОМ, и встречается это гораздо чаще, чем АЛКАЛОЗ- сдвиг рН в щелочную сторону.

Нормальная среда влагалища и желудка, а так же верхнего слоя кожи кислая и составляет рН=1.5 - 2.5. И это не случайно. Желудок и влагалище являются прямыми воротами для инфекции и поэтому кислая среда там просто необходима для уничтожения микробов, а вот для того, чтобы сперма могла преодолеть кислую среду влагалища, в качестве нейтрализатора кислой среды она содержит секрет предстательной железы, обладающий щелочными свойствами.

Задачей первого этапа эндоэкологической реабилитации всегда должно быть восстановление физиологической рН в тканях организма.

Однако эндоэкология определяется не только уровнем рН, но и другими факторами - микроэлементами, витаминами, ферментами.

В кровь человека в зависимости от конкретной ситуации может поступать избыточное количество кислот или щелочей, например:

— при длительной физической нагрузке из мышц в кровь поступает в 10 раз больше молочной кислоты, чем в норме;

— при сахарном диабете в кровь ежесуточно могут поступать десятки граммов кетоновых тел (щелочи);

— вегетарианская пища содержит больше щелочных веществ, мясная - кислых остатков.

Таким образом, в кровь постоянно поступают кислотные и щелочные соединения, образующиеся в организме, в частности, в пищеварительном тракте. Следует учитывать, что в процессе обмена веществ в тканях органов продуцируется кислот больше, чем щелочей. Следовательно, для поддержания постоянства рН крови организм должен иметь мощную регуляторную систему, предупреждающую сдвиги рН. И они, конечно, существуют.
Принято выделять несколько так называемых буферных систем.

1. ГЕМОГЛОБИНОВЫЙ БУФЕР
Это основная буферная системы крови, на ее долю приходится около 76% всей буферной емкости артериальной крови и около 73% венозной. Гемоглобин разъединяет как кислоты, так и щелочи. При поступлении в организм больших количеств СО2, он переходит в эритроциты и в дальнейшем превращается там в угольную кислоту. Это очень важный механизм, предохраняющий венозную кровь от накопления ионов Н +, то есть от закисления.

Гемоглобин может связывать как О2, так и СО2, то есть ему принадлежит основная роль в транспортировке СО2 и О2 для поддержания кислотно-основного состояния организма. Вот почему в анализах крови столь большое внимание уделяется количеству гемоглобина как показателю состояния основной буферной системы для поддержания рН крови.

2. БИКАРБОНАТНЫЙ БУФЕР
Это соотношение концентраций угольной кислоты Н2СО3 и бикарбоната натрия NаНСО3, которое должно быть 120, то есть концентрация бикарбоната натрия в плазме крови должна быть в 20 раз больше, чем углекислоты.

Натрий - это основной компонент соли. Вот почему опасны как недостаток, так и избыток соли: они ведут к смещению рН крови и, следовательно, к заболеваниям. Поэтому пищу лучше недосаливать, в растительной пище натрия всегда достаточно.

Если поступает избыток кислой пищи, то буферная система напрягается, чтобы заменить сильную соляную кислоту на более слабую угольную, которая выводится легкими, ослабляя их при этом. Существующее в медицине выражение «кислое дыхание» отражает изменение рН крови, определяемое с помощью обоняния в такой ситуации.

3. ФОСФАТНЫЙ БУФЕР
н состоит из смеси одно- и двузамещенных солей фосфорной кислоты. Емкость этого буфера значительно меньше, чем бикарбонатного, и обусловливается присутствием фосфора в организме. Его основной источник для нас - растительная пища.

4. БЕЛКОВАЯ БУФЕРНАЯ СИСТЕМА
Буферные свойства белков плазмы крови определяются тем, что белки, как и гемоглобин, могут разъединять и кислоты, и щелочи. Активно разъединяющими группами белка являются аминокислоты лизин, аргинин, гистидин.

В ряде ситуаций буферные системы крови не могут длительно поддерживать постоянный уровень рН, и тогда решающую роль приобретают физиологические механизмы, способствующие быстрому выведению из организма избытка кислот или щелочей:

1. ДЫХАТЕЛЬНАЯ СИСТЕМА Роль буферных систем крови, особенно, гемоглобинового буфера, тесно связана с дыханием, в частности, с выведением СО2. Благодаря этому поддерживается нормальное соотношение между кислотной и щелочной частями бикарбонатного буфера.

При накоплении в крови избыточного уровня СО2, а также при увеличении концентрации водородных ионов повышается возбудимость дыхательного центра. От этого усиливается легочная вентиляция и вслед за этим - нормализация газового состава крови.

При снижении концентрации углекислоты и водородных ионов в крови наблюдается обратное явление - понижение возбудимости дыхательного центра и уменьшение легочной вентиляции.

Таким образом, благодаря деятельности дыхательной системы поддерживается нормальное соотношение частей бикарбонатной буферной системы.

2. ВЫДЕЛИТЕЛЬНАЯ СИСТЕМА. Мощным механизмом регуляции кислотно-щелочного равновесия является выделение кислот и оснований с мочой. Через почки из организма выходят нелетучие кислоты. К ним относятся свободные органические кислоты - молочная, лимонная - и, что особенно важно, однозамещенные, то есть кислые ураты и щелочные фосфаты. При избыточном накоплении в организме щелочных продуктов моча приобретает щелочную реакцию.

Таким образом, почки выводят из организма кислоты и щелочи и одновременно сохраняют натрий (возвращают его в кровь и включают в состав бикарбонатного буфера). В норме рН мочи 6,4.

3. ПИЩЕВАРИТЕЛЬНАЯ СИСТЕМА. Железы слизистой оболочки желудка секретируют соляную кислоту - составляющую часть желудочного сока. Она синтезируется в клетках слизистой оболочки желудка их иона хлора, поступающего из плазмы крови, и иона водорода, образующегося при расщеплении угольной кислоты. Взамен в плазму крови поступают ионы натрия и анионы НСО3. При избыточном выведении соляной кислоты с желудочным соком (например, при неукротимой рвоте) может наступить сдвиг кислотно-щелочного баланса в сторону избытка щелочи.

Железы слизистой оболочки кишечника секретируют кишечный сок, богатый бикарбонатом натрия, который образуется в клетках слизистой из ионов натрия и анионов НСО3, а освободившиеся ионы хлора и водорода поступают в плазму крови. При длительной и сильной потере кишечного сока (например, при поносах) может произойти сдвиг кислотно-щелочного равновесия в сторону избытка водородных ионов - закисления.

Роль печени заключается в выведении кислых и щелочных продуктов из организма с желчью, а также в окислении ряда органических кислот.

Вирусы внедряются в организм и при ацидозе, и при алкалозе. Они являются пусковым механизмом в развитии болезни, ослабляя клетку и давая возможность внедриться другим микроорганизмам. Вирусы чаще ведут к ощелачиванию организма.

У бактерий тоже разный «аппетит». Ацидоз снижает способность гемоглобина связывать кислород, что приводит к развитию кислородного голодания, а значит, — к развитию анаэробных бактерий, то есть кислотных (клостридии, пептококки, руминококки, копрококки, сарцины, бифидобактерии, бактериоды и т.д.). И наоборот, щелочной рН способствует развитию аэробных бактерий (стафилококки, стрептококки, стоматококки, энтерококки, лактококки, листерии, лактобациллы, коринебактерии, гонококки, менингококки, бруцеллы и т.д.).

Простейшие могут жить в любой среде, но активизируются они в щелочной рН. Это амебы, лямблии, токсоплазмы, трихомонады и др.

Самые тяжелые формы болезней и злокачественные опухоли обусловлены поражением грибками Аспергиллус Нигер, Фумигатус и Микозис Фунгоидес. Они очень любят щелочную среду и относятся к плесневым (трихоптон, микроспорум, эпидермофитон, кладоспорум, аспергиллус, мукор и др.) и смешанным (бластомицес, кокцидес, риноспоридиум, микозис фунгоидес и др.). Дрожжеподобные грибки (кандида, криптококкус, трихоспориум и др.) предпочитают кислую среду.

Глисты хорошо себя чувствуют в кислой среде.

Но тогда как же им живется в щелочной среде тонкого кишечника? Во-первых, они питаются через присоски тканевой жидкостью или свежей кровью, а некоторые - и тем, и другим. Во-вторых, внедряются они, скорее всего при уже имеющемся дисбактериозе и сдвиге рН в тонком кишечнике из сильно щелочной в слабощелочную. Поэтому глисты и имеют возможность без труда присосаться или внедриться в слизистую кишечника. И далее они распространяются в те органы, где имеется сдвиг рН в кислую сторону.

Например, личинки трихинелл выбирают себе в качестве жилища мышцы, где имеется большое количество молочной кислоты.

При здоровом желудочно-кишечном тракте патогенные микроорганизмы в нем не задерживаются. Это доказал еще Луи Пастер на собственном опыте, выпив стакан воды с живыми холерными вибрионами и не заболев.

Из всего этого следует совершенно ясный вывод, что регулировать свое кислотно-щелочное состояние мы можем с помощью трех основных механизмов:

Двигательная активность
. правильное дыхание;
. сбалансированный выбор продуктов питания;

Известен хорошо тот факт, что при длительной и интенсивной физической нагрузке из мышц в кровь поступает в 10 раз больше молочной кислоты, чем в норме. Здоровый организм вполне справляется с выведением избытка кислоты из организма, задействуя в частности, дыхательный механизм. А вот если нагрузки чрезмерно интенсивны, что сейчас часто можно увидеть не только в школах олимпийского резерва, но и просто в фитнес-центрах? Тогда необходимо помогать своему организму освобождаться от излишнего закисления.

Большинство продуктов обладают либо кислотными (катаболическими), либо щелочными (анаболическими) свойствами.

1. Продукты, образующие в желудочно-кишечном тракте организма сильную кислую реакцию: мясо (колбаса), рыба, яйца, сыр, сладости, кулинарные изделия из белой муки, кофе
2. Продукты дающие кислую реакцию в ЖКТ: творог, сметана, орехи, продукты их муки грубого помола
3. Продукты, образующие в ЖКТ сильную щелочную реакцию: овощи, свежие фрукты, картофель, зелёный салат
4. Продукты, дающие слабую щелочную реакцию: сухие фрукты, сырое молоко, грибы