Биохимические методы анализа. Методы исследования, применяемые в генетике Для чего используется биохимический метод

Биохимический метод

Биохимические методы исследования применяют при подозрении на врожденные дефекты обмена. Они достаточно сложные и дорогостоящие, поэтому исследование проводится в два этапа. На первом этапе используют более дешевые и быстрые исследования. Это так называемые скринирующие (просеивающие) экспресс-методы, позволяющие обследовать большие группы населения. Сюда относится, например, микробиологический тест Гатри для обследования всех новорожденных на фенилкетонурию. Экспресс - методом диагностики фенилкетонурии можно считать также тест Феллинга. Таким тестом на галактоземию и фруктоземию является проба Бенедикта. Для проведения подобных тестов используют кровь и мочу.

На втором этапе диагностики пользуются более сложными методами биохимии и молекулярной биологии: методами фракционирования и количественного анализа, жидкостной и газовой хроматографией, иммунохимическими методами, изучают электрофоретическую подвижность белков. Возможно прямое измерение ферментативной активности. Применяются исследования мутантных белков с помощью меченых субстратов.

Популяционно-генетический метод

Данные, полученные при клинико-генеалогическом и близнецовом методах исследования, сравниваются с данными о частоте встречаемости признака (заболевания) в общей популяции. Частота того или иного гена в конкретной популяции определяет и особенности накопления больных в семьях.

Изучение генетической структуры популяции является необходимым этапом изучения распределения наследственных болезней в семьях.

Под популяцией в генетике понимается часть населения, занимающая одну территорию на протяжении многих поколений и свободно вступающая в брак между собой. В этой группе выполняется условие панмиксии, и нет изоляционных барьеров, препятствующих свободным бракам. В такой популяции соотношение частот доминантных и рецессивных аллелей при достаточно большом размере популяции сохраняется в ряду поколений без изменений. Закон генетической стабильности выражается формулой Харди-Вайнберга:

р 2АА: 2pqAa: q2aa, или + q)2 =1, тогда (p+q)=1,

т.е. частоты доминантного А и рецессивного гена а в сумме составляют единицу и являются постоянной величиной, а соотношение доминантных гомозигот, гетерозигот и рецессивных гомозигот определяется как квадрат встречаемости доминантного аллеля, произведение доминантного и рецессивного аллелей и квадрат встречаемости рецессивного аллеля соответственно.

Популяций, полностью отвечающих требованиям идеальной генетической стабильности по Харди - Вайнбергу, в природе не существует, т.к. для выполнения выше указанных условий должны отсутствовать мутационный процесс, естественный отбор и миграция. Однако как рабочая формула закон Харди - Вайнберга с успехом используется в популяционно-генетических исследованиях, ибо в больших популяциях перечисленные процессы протекают достаточно медленно (в отсутствие войн и гуманитарных катастроф) и не вызывают сколько-нибудь значительных изменений соотношения частот аллелей.

Популяционно-генетический метод позволяет установить частоты генов болезней в популяции и частоту гетерозиготного носительства. Встречаемость гетерозиготного носительства при некоторых врожденных нарушениях обмена с аутосомно-рецессивным типом наследования показана в табл. 3.

Таблuца 3.Встречаемость гетерозиготного носительства

По распространенности частот генов и связанных с ними фенотипов можно судить об адаптивной ценности отдельных генотипов.

Благодаря бракам внутри отдельных популяций определенные гены могут ограничиваться пределами конкретных популяций либо распределяться неравномерно между различными популяциями. Если вступление в брак для любых членов популяции равновероятно, то такая популяция называется панмиксной. Если имеются препятствия (этнические, социальные, религиозные), то группы населения, различающиеся по этим параметрам, могут образовывать изоляты внутри популяции. Неизбирательные по указанным признакам браки (аутбридинг) предполагают случайный подбор супругов. Отклонения от панмиксии возникают, когда браки ассортативны, т.е. супруги подбираются по какому-либо признаку, например, по общим дефектам сенсорной сферы, опорно-двигательного аппарата или по психическому недоразвитию.

В наше время браки между индивидами, страдающими нарушениями слуха или зрения, являются скорее правилом, чем исключением. Отклонения от панмиксии происходят и тогда, когда в брак вступают родственники. Такой брак называется кровнородственным (инбридинг). Близкородственные браки между родственниками 1 степени родства (между родителями и детьми и родными братьями и сестрами) называются инцестными. Примеры таких браков можно привести лишь из истории. Так, царица Египта Клеопатра родилась от инцестного брака и состояла в браках с родными братьями. Это было связано со стремлением сохранить свою "голубую" кровь. В настоящее время такие браки повсеместно, запрещены. Запрет связан с повышенным риском выявления рецессивной и полигенной патологии. Браки между родственниками П степени родства (дядя - племянница, тетя племянник) распространены, в частности, в арабских странах, что обусловлено экономическими соображениями. В России частота кровнородственных браков не превышает 1 % и в основном в такой брак вступают двоюродные сибсы либо родственники более отдаленных степеней родства. Таким образом, степень родства между индивидуумами в различных популяциях неодинакова. Для ее оценки пользуются коэффициентом инбридинга F (Райт, 1885), определяющим вероятность идентичности по происхождению двух любых аллелей данного локуса. Например, нужно установить вероятность того, что у супругов - дяди и племянницы имеется по одному рецессивному гену фенилкетонурии, полученному от общего предка. Таким общим предком для них является бабушка или дедушка племянницы. Вероятность того, что бабушка (дедушка) передали свой ген (ФКУ) одному из своих детей, составляет 1/2. Вероятность того, что оба ребенка бабушки (дедушки) получили этот ген, составляет 1/2 х 1/2 = 1/4. Вероятность двух независимых событий равна произведению их вероятностей. Вероятность того, что один из детей бабушки передал этот ген своему ребенку, составляет также 1/2. Следовательно, коэффициент инбридинга составит 1/4 х 1/2 = 1/8. Рассуждая так, можно рассчитать, что коэффициент инбридинга для браков двоюродных сибсов составит 1/16, троюродных - 1/32, четвероюродных -1/64.

В небольших популяциях в связи с ограниченностью выбора нарастает инбредность, возникает явление "инбредной депрессии": число гетерозигот по рецессивной болезни снижается, а гомозигот (больных) повышается. Коэффициент инбридинга может быть рассчитан как для популяций, так и для пары индивидов. Еще один близкий показатель, называемый коэффициентом родства (Ф), можно рассчитать только для двух индивидов. Коэффициент родства Фху - это вероятность того, что любой ген, принадлежащий индивиду Х, идентичен гену того же локуса, у индивида У. Коэффициент родства определяет долю общих генов у пары родственников. Так, у монозиготных близнецов 100% общих генов, у родственников 1 степени родства (родитель-ребенок, родные сибсы) - 50% общих генов, у родственников 11 степени родства (дяди, тети, племянники, бабушки (дедушки), внуки) - 25% общих генов у родственников 111 степени родства (двоюродные сибсы, прадедушки (прабабушки), правнуки) - 12,5% общих генов. Таким образом, долю общих генов у родственников можно определить по формуле (1j2n), где п - степень родства.

Биохимический метод используется для диагностики наследственных болезней обмена. Методы биохимической генетики имеют несколько уровней.

Первый этап предполагает обследование с помощью недорогих качественных ориентировочных экспресс-методик, так называемых скрининговых качественных и полуколичественных реакций с мочой и кровью, позволяющих заподозрить то или иное заболевание.

На втором этапе обследование проводят с помощью сложных и дорогих количественных методов для установления точного диагноза наследственного заболевания. При этом осуществляется количественное определение в крови аминокислот, белков-ферментов и др.

Третий этап включает в себя определение дефектного гена методами молекулярной диагностики.

Медико-генетическое консультирование - специализированный вид медицинской помощи населению направленный на профилактику наследственных болезней. Суть его в определении прогноза рождения ребенка с наследственной патологией, объяснении вероятности этого события и помощи консультирующейся семье в принятии решения о деторождении.

Медико-генетическая консультация состоит из трех этапов: диагностика, прогнозирование и заключение. Как правило, за консультацией обращаются семьи, где уже имеется ребенок с наследственной патологией, или семьи, в которых имеются больные родственники. Консультирование всегда начинается с уточнения диагноза наследственной болезни, поскольку точный диагноз является необходимой предпосылкой любой консультации. Уточнение диагноза в медико-генетической консультации проводится с помощью генетического анализа. При этом во всех без исключения случаях применяется генеалогический метод исследования.

На втором этапе определяют прогноз для потомства. Генетический риск может быть определен либо путем теоретических расчетов с использованием методов генетического анализа и вариационной статистики, либо с помощью эмпирических данных (на основе таблиц эмпирического риска). При моногенных, менделирующих болезнях прогноз основывается на расчете вероятности появления потомства в соответствии с генетическими закономерностями. При этом если известен тип наследования данного заболевания и по родословной удается установить генотип родителей, оценка риска сводится к анализу менделевского расщепления. Третий этап консультирования включает представление заключения и советы родителям. Заключительные этапы консультирования требуют самого пристального внимания. Нельзя получить правильный эффект консультирования, если пациенты неправильно поймут объяснения врача-генетика. Для достижения цели консультирования при беседе с пациентами следует учитывать уровень их образования, социально-экономическое положение семьи, структуру личности и взаимоотношения в семье.



Пренатальная диагностика - дородовая диагностика, с целью обнаружения патологии на стадии внутриутробного развития. Позволяет обнаружить более 90 % плодов с синдромом Дауна (трисомия 21); трисомии 18 (известной как синдром Эдвардса) около 97 %, более 40 % нарушений развития сердца и др. В случае наличия у плода болезни родители при помощи врача-консультанта тщательно взвешивают возможности современной медицины и свои собственные в плане реабилитации ребенка. В результате семья принимает решение о судьбе данного ребенка и решает вопрос о продолжении вынашивания или о прерывании беременности.

К пренатальной диагностике относится и определение отцовства на ранних сроках беременности, а также определение пола ребенка.

  1. В медицине под скринингом понимают проведение простых и безопасных исследований больших групп населения с целью выделения групп риска развития той или иной патологии. По охвату населения:
    1. массовый
    2. селективный
  2. По категории населения:
    1. пренатальный
    2. неонатальный
  3. По сроку гестации:
    1. первого триместра
    2. второго триместра
  4. По методу:
    1. ультразвуковой
    2. эндоскопический
    3. цитологический
    4. биохимический
    5. комбинированный
    6. аудиологический

Доклиническая или начальная клиническая стадия болезни чаще всего отличается минимально выраженными субъективными и объективными признаками того или иного заболевания. Выявление заболевания на данной стадии обозначает возможность его профилактики или благоприятного течения, благодаря комплексу тех или иных мероприятий. Но врачу, анализирующему результаты диспансеризации, проводимой по «старым» методическим схемам, сложно ориентироваться, трудно принимать решение и предвидеть пути дальнейшего развития той или иной патологии. Особенно это имеет отношение к трудоспособной части населения, не имеющей ранее установленных диагнозов или впервые обратившихся к врачу. Именно поэтому не всегда оправдано использование многих лабораторных и инструментальных исследований, а также консультаций специалистов на этапе первого контакта с пациентом. Во-первых, не всем больным показан весь спектр диспансерных исследований. Во-вторых, время принятия диагностического и терапевтического решения в классическом варианте обследования больного достаточно продолжительно. Более того, нередко возникают неточные диагностические гипотезы, например, о т.н. функциональных заболеваниях, которые затем на продолжительный период времени остаются за границами действенных терапевтических или профилактических мероприятий. Основная задача диспансеризации заключается в срочном распознавании болезней и угрожающих состояний и в выборе тактических решений по их устранению или снижению риска для жизни. Благодаря диспансеризации, может быть обеспечена первичная профилактика многих заболеваний, их превентивная терапия, или же лечение заболеваний в начальной стадии, когда оно наиболее эффективно. Напротив, именно из-за поздней диагностики результаты лечения в ряде случаев неудовлетворительны. Таким образом, идеалом диспансеризации могла бы стать такая система, которая могла бы обеспечить не только диагностику (прогноз) заболеваний на ранней (доклинической) стадии развития, но и принятие правильного решения.

популяция - это группа особей определенного вида, которая: 1) в течение достаточно длительного времени (большого числа поколений) населяет конкретный ареал; 2) в той или иной степени случайно скрещивается в его пределах; 3) не имеет внутри себя заметных изоляционных барьеров; отделена от соседних групп этого вида той или иной степенью давления тех или иных форм изоляции. Генетически популяции характеризуются:

  • Генофондом - совокупностью всех генов всех членов популяции
  • Генетическим единством, обусловленным панмиксией.
  • Наследственным разнообразием генофонда - генетической гетерогенностью генофонда, обусловленной мутационным процессом, потоком генов (миграцией), рекомбинацией.

Между популяциями одного вида существует постоянный обмен генами, осуществляющийся за счет миграций отдельных особей и обеспечивающий сохранение единства генофонда вида. Таким образом, ценные приспособительные варианты, возникшие и размножившиеся в одной локальной популяции, постепенно распространяются в пределах всего вида. Еще одним важным фактором повышения изменчивости в популяции является процесс рекомбинации.

Процесс эволюции основывается на двух главных явлениях: изменчивости и изменении частот генов и генотипов, что составляет сущность элементарного эволюционного события.

К изменению частот аллелей и генотипов в популяции приводит отбор, однако оно возможно и в результате мутаций, миграции особей, случайного дрейфа генов, изоляции, а также избирательного, или ассортативного, скрещивания. Все эти факторы, действующие в популяциях, называют факторами динамики популяций.

Потоком генов называют изменение генетического состава популяции, возникшее вследствие поступления в популяцию новых генов в результате миграции или контактов с представителями других популяций (Маккьюсик, 1967; Мала, Кайгер, 1988). Если популяции имеют разные частоты аллелей, то миграция может приводить к изменению частот аллелей, привносимых особями-иммигрантами.

Непосредственные результаты такого события связаны с последствиями возникновения мутаций, однако миграция изменяет частоты аллелей значительно быстрее, чем мутации. Влияние потока генов на динамику популяций тех или иных организмов зависит от времени достижения половозрелости и скорости размножения, а также расстояния между локальными популяциями.

Внутри многочисленных популяций собак и кошек земного шара, благодаря скрещиваниям происходит свободный обмен генами. С другой стороны, огромное значение для генофонда популяций имеют миграции. Этот процесс идет в разных направлениях: во-первых, широко мигрируют по городам и странам владельцы собак и кошек, перевозящие с собой своих любимцев; во-вторых, идет интенсивный завоз щенков, котят и взрослых животных с целью улучшения местного поголовья владельцами питомников и руководителями кинологических и фелинологических объединений.

Из каких-то стран или городов завозятся единичные особи, вклад которых в популяцию может быть совсем небольшим. Из других вывоз племенного поголовья носит массовый характер, соответственно широким потоком вливаются в генофонд местных популяций их гены.

Закон Харди-Вайнберга - это закон популяционной генетики - в популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны - частоты генотипов по какому-либо гену (в случае если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение и соответствовать уравнению:

p² + 2pq + q² = 1

Где p² - доля гомозигот по одному из аллелей; p - частота этого аллеля; q² - доля гомозигот по альтернативному аллелю; q - частота соответствующего аллеля; 2pq - доля гетерозигот.

Закон действует в идеальных популяциях, состоящих из бесконечного числа особей, полностью панмиктических и на которых не действуют факторы отбора.

Генетический полиморфизм , сосуществование в пределах популяции двух или нескольких различных наследственных форм, находящихся в динамическом равновесии в течение нескольких и даже многих поколений. Чаще всего Генетический полиморфизм обусловливается либо варьирующими давлениями и векторами (направленностью) отбора в различных условиях (например, в разные сезоны), либо повышенной относительной жизнеспособностью гетерозигот . Один из видов Генетический полиморфизм - сбалансированный Генетический полиморфизм - характеризуется постоянным оптимальным соотношением полиморфных форм, отклонение от которого оказывается неблагоприятным для вида, и автоматически регулируется (устанавливается оптимальное соотношение форм). В состоянии сбалансированного Генетический полиморфизм у человека и животных находится большинство генов. Различают несколько форм Генетический полиморфизм , анализ которых позволяет определять действие отбора в природных популяциях.

«Генетический груз » - термин, чаще всего используемый для обозначения суммы неблагоприятных летальных и сублетальных мутаций в генофонде популяции. Концепция была предложена английским популяционным генетиком Джоном Холдейном (1937) Генетический груз - накопление летальных и сублетальных отрицательных мутаций, вызывающих при переходе в гомозиготное состояние выраженное снижение жизнеспособности особей, или их гибель.

«Вырождение» - наблюдаемое при близкородственном скрещивании ухудшение фенотипических характеристик потомства.

В более строгом смысле генетический груз в популяционной генетике - это выражение уменьшения селективной ценности для популяции по сравнению с той, которую имела бы популяция, если бы все индивидуальные организмы соответствовали бы наиболее благоприятному генотипу. Обычно выражается в средней приспособленности по сравнению с максимальной приспособленностью.

Частью генетического груза является мутационный груз.

Генетический груз рассматривается, как мера неприспособленности популяции к условиям окружающей среды. Он оценивается по различию приспособленности реальной популяции - по отношению к приспособленности воображаемой, максимально приспособленной популяции.

Биохимический метод - основной метод в биохимии из основных методов диагностики различных заболеваний, которые вызывают нарушение обмена веществ. Именно об этом методе анализа и пойдет речь в данной статье.

Объекты диагностики

Объектами диагностики биохимического анализа являются:

  • кровь;
  • моча;
  • пот и другие биологические жидкости;
  • ткани;
  • клетки.

Биохимический метод исследования позволяет определять активность ферментов, содержание продуктов метаболизма в различных биологических жидкостях, а также выявлять нарушения в обмене веществ, которые обусловлены наследственным фактором.

История

Открыт биохимический метод английским врачом А. Гарродом в начале ХХ века. Он изучал алкаптонурию, и в ходе изучения им было установлено, что врожденный метаболизм или заболевание обмена веществ можно определить по признаку отсутствия специфических ферментов.

Различные наследственные заболевания обуславливаются мутациями в генах, которые изменяют структуру и скорость синтеза белков в организме. При этом нарушается углеводный, белковый и липидный обмен.

Основное

В целях клинической диагностики изучается химсостав биологических материалов и тканей, так как при патологии могут проявиться изменения концентрации, отсутствие компонентов или наоборот появление какого-либо другого компонента. По определяют количество определенных веществ, гормональный баланс, ферменты.

Исследуются молекулы, белки, нуклеиновые кислоты и другие вещества, которые входят в состав живого организма.

Результаты

Результат биохимического метода исследования может быть разделен на качественный (обнаружен или не обнаружен) и количественный (каково содержание того или иного вещества в биоматериале).

В качественном методе исследования используются свойства, характерные для используемого вещества, которые проявляются при определенных химических воздействиях (при нагревании, при прибавлении реагентов).

Прямой определяется на основе этого же принципа, но сначала определяют обнаружение какого-либо вещества, а затем уже измеряют его концентрацию.

Гормоны, медиаторы содержатся в организме в очень малых количествах, поэтому их содержание измеряют при помощи биологических тест-объектов (например, отдельного органа или целого экспериментального животного). Этим повышается чувствительность и специфичность исследований.

Историческая эволюция

Биохимический метод совершенствуется, чтобы получать наиболее точный результат и информацию о состоянии обменных процессов в организме, процессов обмена веществ в определенных органах и клетках. В последнее время биологические методы диагностики сочетают с другими методами исследований, такими как иммунные, гистологические, цитологические и другие. Для использования более сложного метода или методов обычно используют специальное оборудование.

Существует другое направление биохимического метода, которое не вызывается запросом клинической диагностики. С помощью разработки и применения быстрого и максимально упрощенного метода, который может позволить за несколько минут определить оценку нужных биохимических показателей.

В наше время лаборатории оснащены новейшим усовершенствованным оборудованием и механическими и автоматическими системами и приборами (анализаторами), которые позволяют быстро и точно определить нужный показатель.

Биохимический метод изучения: способы

Измерение какого-либо вещества в биологических жидкостях и их определение осуществляется разными многочисленными способами. Например, определить такой показатель как холестеринэстераза, можно сотнями вариантов методов биохимического исследования. Выбор конкретной методики во многом зависит от характера исследуемых биологических жидкостей.

Биохимический метод исследования используется для определения одного вещества или показателя как однократно, так и в динамике. Этот показатель проверяют при определенном времени суток, под определенной нагрузкой, в процессе заболевания, при приеме каких-либо препаратов.

Особенности метода

Особенности биохимического метода:

  • минимальное количество используемого биоматериала;
  • скорость выполнения анализа;
  • возможное многократное применение данного метода;
  • точность;
  • биохимический метод можно использовать в процессе болезни;
  • прием препаратов не влияет на результат исследования.

Биохимические методы генетики

В генетике чаще всего используется цитогенетический метод исследования. Он позволяет подробно изучить хромосомные структуры и их кариотип. С помощью данного метода можно выявить наследственные и моногенные заболевания, которые связаны с мутациями и полиморфизмами генов и их структур.

Биохимический метод генетики сейчас широко используется для того, чтобы находить новые формы мутантных аллелей в ДНК. При помощи данного метода было выявлено и описано больше 1000 вариантов заболеваний обмена веществ. Большинство описанных заболеваний - это болезни, которые связаны с дефектами ферментов и других структурных белков.

Диагностика нарушений обменных процессов биохимическими методами проводится двумя этапами.

Первый этап:

  • проводится отбор предположительных случаев заболевания.

Второй этап:

  • уточняется диагноз заболевания более точной и сложной методикой.

Новорожденным детям в пренатальный период при помощи биохимического метода исследования проводится диагностика наследственных заболеваний, что позволяет своевременно обнаружить патологию и вовремя начинать лечение.

Виды метода

Биохимический метод генетики может иметь множество видов. Все они делятся на две группы:

  1. Биохимические методы, в основе которых лежит выявление определенных биохимических продуктов. Это обусловлено изменениями действий различных аллелей.
  2. Метод, который основывается на том, чтобы непосредственно выявить измененные нуклеиновые кислоты и белки при помощи гель-электрофореза в сочетании с другими методиками, такими как блот-гибридизация, авторадиография.

Биохимический метод помогает выявить гетерозиготные носители различных заболеваний. в человеческом организме ведут к появлению аллелей и к хромосомным перестройкам, которые плохо влияют на здоровье человека.

Также биохимические методы диагностики позволяют выявить различные полиморфизмы и мутации генов. Усовершенствование биохимического метода и биохимической диагностики в наше время помогает выявить и подтвердить большое количество различных нарушений обменных процессов организма.

В статье был рассмотрен биохимический метод анализа.

Механизм развития (патогенез) многих генных заболеваний человека связан с нарушением тех или иных звеньев обмена веществ, сопровождающихся появлением в организме повышенных концентраций определенных метаболитов. В этих случаях в диагностике заболеваний широко используют биохимические методы, позволяющие выявлять продукты нарушенного метаболизма.

Ранняя диагностика таких заболеваний обычно позволяет своевременно начать их патогенетическое лечение (проводить ту или иную коррекцию развивающегося патологического фенотипа). Поэтому уделяется большое внимание разработке «просеивающих» программ, или программ скрининга (от англ, screen - просеивать, сортировать), задачей которых является выявление наследственной патологии при массовом обследовании новорожденных с помощью тех или иных биохимических тестов. Биохимические методы можно применять и при проведении дородовой диагностики заболеваний.

Программа скрининга, как правило, осуществляется в два этапа. На первом этапе (массовый скрининг) проводят исследование больших контингентов детей (в роддомах, детских лечебно-профилактических учреждениях) с использованием относительно простых тестов. На втором этапе (селективный скрининг) уточняют диагноз и характер развития патологии у больных детей, выявленных при массовом обследовании, с помощью более сложных и точных биохимических методов исследования (электрофорез, хроматография, спектрофотометрия, спектроскопия и др.).

Примером успешного использования скринирующей программы могут служить исследования по выявлению детей с фенилкетонурией, проводившиеся в ряде стран. Как известно, в основе этого заболевания лежит блокирование основного биохимического этапа превращения фенилаланина в тирозин. При этом в организме накапливается фенилаланин, и на первое место выступает второстепенный путь его обмена, приводящий к образованию фенилпирувата. Последний не подвергается дальнейшим превращениям, накапливается в крови и тканях ребенка (в основном в форме фенилпировиноградной кислоты), вызывая хроническую интоксикацию организма (прежде всего головного мозга), и выделяется с мочой.

Широкое использование разработанных скрининг-тестов (теста Гатри, пробы с 2,4-динитрофенилгидразином, пробы Феллинга) при массовой диагностике фенилкетонурии позволили, например, в США из 28 млн обследованных новорожденных выявить 2000 больных индивидуумов. В этих случаях удалось избежать развития тяжелых проявлений заболевания путем раннего перевода таких детей на специальную диету с резким ограничением потребления фенилаланина.

Поскольку в крови больных фенилкетонурией повышается концентрация аминокислоты фенилаланина, которая выводится из организма с мочой, в диагностике заболевания практическое применение получил тест Гатри, основанный на использовании мутантных бактерий, неспособных расти на искусственной питательной среде без добавления этой аминокислоты. В указанном тесте стандартные диски фильтровальной бумаги, смоченные каплей крови (либо мочи) исследуемого ребенка, после их высушивания наносят на поверхность плотной диагностической среды в чашке Петри, предварительно засеянной соответствующими бактериями. На основании размеров зоны роста бактерий вокруг диска определяют концентрацию фенилаланина в исследуемом материале. Метод удобен и тем, что фильтровальные диски, смоченные мочой или кровью ребенка, можно пересылать по почте в специализированные лаборатории, в которых проводятся соответствующие биохимические исследования. Для уточнения диагноза в дальнейшем используют методы хроматографии и электрофореза, позволяющие определить аминокислотный состав мочи и сыворотки крови больного.

Ниже приводится краткая информация о некоторых биохимических скрининг-тестах, применяемых при массовой диагностике отдельных наследственных заболеваний, связанных с нарушением обмена веществ. Для исследования используют кровь, мочу, культивирующиеся клетки и другой материал, полученный от того или иного индивидуума.

Проба Феллинга для диагностики фенилкетонурии. К 2 мл свежей мочи добавляют шесть капель 10%-го раствора хлористого железа и уксусной кислоты, вступающих в реакцию с фенилпировиноградной кислотой. Появление сине-зеленой или серо-зеленой окраски свидетельствует о положительном результате пробы, что соответствует уровню фенилаланина в крови порядка 900-1200 мкМоль/л (норма до 120 мкМоль/л или 2 мг%).

Проба с 2,4-динитрофенилгидразином (2,4-ДНФГ) на наличие фе- нилпировиноградной кислоты. К 2 мл мочи добавляют такое же количество 0,3%-го раствора 2,4-ДНФГ. Вначале смесь прозрачна. Если в пробе имеется фенилпировиноградная кислота, то в течение 1-3 мин она приобретает ярко-желтый мутный оттенок, который сохраняется в течение суток. Применяется для диагностики фенилкетонурии.

Проба на цистин и гомоцистин. К пяти каплям мочи добавляют каплю концентрированного раствора аммиака и две капли раствора цианида натрия (2 г цианида натрия, 5 мл воды и 95 мл 96%-го этанола). Через несколько минут добавляют несколько капель 5%-го раствора нитропруссида натрия. Реакция считается положительной при появлении темно-красной окраски. Проба используется для диагностики цистинурии (повышенного содержания в моче аминокислоты цистина) и гомоцистинурии (наличия в моче гомоцистина).

Иод-азидная проба на цистин для диагностики цистинурии и гомоцистинурии. Используемый реактив: 1,5 г азида натрия растворяют в 50 мл 0,1%-го раствора йода; полученный раствор разводят в 50 мл 95%-го этанола и хранят в темном сосуде при комнатной температуре. К моче, высушенной на фильтровальной бумаге, добавляют одну каплю реактива и в течение 5 мин наблюдают за выцветанием темно-коричневой окраски. Если выцветание происходит в течение этого времени, то в образце содержится цистин или гомоцистин в повышенных концентрациях.

Тест Миллона (на тирозин). Используемый реактив: 10 г металлической ртути растворяют в 11 мл концентрированной азотной кислоты, полученный раствор медленно вливают в 29 мл дистиллированной воды. На фильтровальную бумагу, смоченную мочой обследуемого индивидуума, наносят одну каплю реактива Миллона. Появление красно-оранжевой окраски свидетельствует о положительной пробе. С помощью этого теста выявляют повышенное содержание тирозина в моче (тирозинурию) при нарушениях метаболизма этой аминокислоты, приводящих к увеличению ее концентрации в плазме крови (тирози- немии).

Проба на галактозу и лактозу. К 1 мл мочи добавляют 0,5 мл концентрированного раствора аммиака и три капли 10%-го раствора NaOH. Пробу нагревают до кипения, при появлении ярко-желтой окраски она считается положительной. Используется при диагностике галактоземии.

Проба Селиванова на фруктозу. Несколько кристаллов резорцина растворяют в 3 мл концентрированной соляной кислоты. К одному объему полученного реактива добавляют два объема мочи, смесь подогревают на водяной бане. При наличии фруктозы наблюдается интенсивное красное окрашивание. Пробу проводят для обнаружения фруктозурии при повышенном содержании этого углевода в крови больного (фруктоземии).

Проба Саржа на фруктозу. На два кристалла КОН наносят две капли мочи, при наличии в ней фруктозы появляется красное окрашивание. Пробу используют для диагностики фруктозурии.

Проба Алъгаузена на глюкозу. К 4 мл мочи добавляют 1 мл 10%-го раствора NaOH, кипятят 1 мин. Через 10 мин сравнивают результат со стандартной шкалой. При положительной пробе - окраска от желтой до интенсивной красно-коричневой. Проводят для выявления глюкозурии.

Проба с цетилтриметиламмония бромидом (ЦТАБ ) на гликозами- ногликаны (мукополисахариды ). Используемый реактив: 2,5%-ный раствор ЦТАБ в 1М цитратном буфере; pH 5,75. К 5 мл мочи добавляют 1 мл реактива. При положительном результате в течение 30 мин наблюдают образование хлопьевидного осадка. Такой результат можно получить при обследовании лиц с синдромами Марфана, Гурлера, Хантера, а также в случае ревматоидного артрита и некоторых других заболеваний.

Тест с толуидиновым синим на мукополисахариды. Используют реактив: 0,04%-ный раствор толуидинового синего в 0,2%-ной уксусной кислоте. Одну каплю мочи наносят на фильтровальную бумагу, высушивают при комнатной температуре, погружают в реактив на 1 мин, после чего отмывают в 95%-ном этаноле. Толуидиновый синий реагирует с кислыми гликозаминогликанами как катионовый краситель, давая стойкое пурпурное кольцо на голубом фоне.

Проба на порфирию. Пробу проводят с мочой или фекалиями, к которым добавляют реактив, содержащий амиловый спирт, ледяную уксусную кислоту и эфир в равных количествах. Появление бриллиантово-розовой флюоресценции при освещении ультрафиолетом свидетельствует о наличии порфирина.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

  • 1. Укажите, при каких из приведенных заболеваний возможно проведение массового скрининга с использованием биохимических тестов:
    • а) фенилкетонурия;
    • б) болезнь Дауна;
    • в) трисомия X;
    • г) галактоземия;
    • д) тирозинемия.
  • 2. Перечислите методы диагностики, применяемые при подозрении на следующие заболевания: галактоземию, фенилкетонурию, болезнь Дауна, фруктоземию.

Биохимический метод изучения генетики человека основан на изучении характера биохимических реакций в организме и обмена веществ для установления носительства аномального гена или уточнения диагноза.
В отличие от цитогенетического метода, который позволяет изучать структуру хромосом и кариотипа в норме и диагностировать наследственные болезни, связанные с изменением их числа и нарушением организации, наследственные заболевания, обусловленные генными мутациями, а также полиморфизм по нормальным первичным продуктам генов изучают с помощью биохимических методов.
Эти методы позволяют определить место и характер мутации по изменениям в составе затронутых мутацией белков. Например, при мутации, ведущей к замене всего одной аминокислоты в огромной молекуле переносчика кислорода — гемоглобина, возникает наследственное заболевание, получившее название серповидной анемии, при котором эритроциты принимают форму полумесяца. Исследовав аминокислотный состав гемоглобина и обнаружив замену, можно сразу поставить диагноз.
Впервые эти методы стали применять для диагностики генных болезней еще в начале XX в. В последние 30 лет их широко используют в поиске новых форм мутантных аллелей. С их помощью описано более 1000 врожденных болезней обмена веществ. Для многих из них выявлен дефект первичного генного продукта. Наиболее распространенными среди таких заболеваний являются болезни, связанные с дефектностью ферментов, структурных, транспортных или иных белков. Установлено большое разнообразие гемоглобинов у человека, связанное с изменением структуры его пептидных цепей, что нередко является причиной развития заболеваний. Дефекты ферментов устанавливают путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме.
Предметами современной биохимической диагностики являются специфические метаболиты, энзимопатии, различные белки. Объектами биохимического анализа могут служить моча, пот, плазма и сыворотка крови, форменные элементы крови, культуры клеток (фибробласты, лимфоциты). Для биохимической диагностики используются как простые качественные реакции (например, хлорид железа для выявления фенилкетонурии), так и более точные методы.
Биохимическую диагностику наследственных нарушений обмена проводят в два этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором — более точными и сложными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия, как, например, в случае фенилкетонурии. Для определения содержания в крови, моче или амниотической жидкости промежуточных, побочных и конечных продуктов обмена кроме качественных реакций со специфическими реактивами на определенные вещества используют хроматографические методы исследования аминокислот и других соединений.
Биохимические методы изучения наследственности человека помогают обнаружить ряд заболеваний обмена веществ (углеводного, аминокислотного, липидного и др.) при помощи, например, исследования биологических жидкостей путем качественного или количественного анализа.
С помощью биохимических методов открыто около 500 молекулярных болезней, являющихся следствием проявления мутантных генов. При различных типах заболеваний удается либо определить сам аномальный белок-фермент, либо установить промежуточные продукты обмена. По результатам биохимических анализов возможно поставить диагноз болезни и определить методы лечения. Ранняя диагностика и применение различных диет на первых этапах постэмбрионального развития позволяют излечить некоторые заболевания или хотя бы облегчить состояние больных с неполноценными ферментными системами.