Какие углеводные компоненты встречаются в составе сапонинов. Сапонины - что это такое? Определение и свойства вещества

Особая группа гликозидов отличительной особенностью которых, является образование устойчивой пены (sapo - мыло) при смешивании их с водой. Сапонины, обладающие высоким токсическим влиянием, нередко называются и сапотоксинами.

Их влияние проявляется в основном на форменные элементы крови (гемолиз), а также в сильном раздражении тканей и слизистых оболочек.

Могут быть в природе и сочетания алкалоидов и глюкозы- гликоалкалоиды (например, соланин картофеля и др.).

Особенно сильным раздражающим действием обладают гликозиды содержащие при своем распаде аллилово-горчичные масла Этим соединениям присуще кожно-нарывное действие.

Азотсодержащие гликозиды - нитрилгликозиды,

Нитрилгликозиды существенно отличаются по своему строению от обычных гликозидов.

В их состав входит азот, причем в результате расщепления образуется более или менее значительное количество свободной синильной кислоты (HCN). От­равления животных бывают обусловлены именно этим компонентом распада нитрилгликозида. В нерасщепленном состоянии молекулы таких нитрилгликозидов опасности не представляют.

Гликозиды, отщепляющие HCN, имеют различные наименования, но все они, разлагаясь под влиянием ферментов, обладают влиянием на организм, адекватным количеству HCN.

Токсоальбумины

Эти вещества содержатся в небольшом количестве растений, но по своему влиянию на организм они весьма активны. В химическом отношении их трудно классифицировать. С ядовитыми белками (альбоальбуминами) их можно сравнивать лишь по реактивности к ним организма. Дело в том, что на введение этих веществ организм реагирует так же, как и на введение чужеродного белка, т. е. они, обладают как бы иммунногенными свойствами.

Токсикологическое значение их в ветеринарии очень большое (например, отравление вехом - цикутоксин, семенами клещевины- рицин, корой белой акации - робин и др.).

Эфирные масла.

В химическом и физическом отношении эфирные масла весьма разнообразные вещества. Твердые эфирные масла нередко называются общим наименованием «камфары», или «камфароподобные вещества». В растениях имеется огромное количество различных эфирных масел, чем обусловлен и запах, специфический для того или другого растения.

Общим для них признаком является плохая растворимость в воде, удельный вес меньше единицы (тяжелее воды лишь окисленные масла). В химическом отношении это собственно терпены или их ближайшие производные.

Из эфироносных растений многие имеют токсикологическое значение (например, полынь и др.).

Другие действующие начала

К другим действующим началам относятся органические кислоты и их ангидриды. Токсикологическое значение кислот этой группы для животных и птиц относительно небольшое.

К растениям, содержащим органические кислоты, можно отнести щавели (щавелевая кислота), молочай (ангидрид эвфорбиновой кислоты) и др. К этой же группе нужно отнести и действующие вещества типа лактонов (дикумарин донника, сантонин цитварной полыни и др.).

Краткие сведения о происхождении ядовитых веществ в растениях и о влиянии условий на их накопление

Растение в зависимости от условий внешней среды могут сильно изменять свои свойства а также и отложение тех или иных химических соединений.

Так называемые сорные и ядовитые растения естественных пастбищ и лугов также неодинаковы по токсичности. Больше того, одни и те же растения в зависимости от места произрастания в одних случаях обладают высокой ядовитостью, а в других - используются с успехом как кормовые растения. Это относится, например, к хвощам, звездчатке и т. д.

Колебания в накоплении ядовитых веществ имеют место у одних и тех же растений в различные фазы вегетации (до и после цветения), в различных частях растений и в зависимости от метеорологических условий в определенные месяцы (например, накопление синильной кислоты в сорго после морозов).

Большинство растений, независимо от времени произрастания, местности и т. п. сохраняет свою ядовитость.

Сапонины - что это такое?.. Данный вопрос и многие вытекающие из него «загадки» мы постараемся рассмотреть здесь. Данная статья позволит определить их классификацию, существующие виды, значение термина, качественные параметры физической и химической природы и т. д.

Введение

В соответствие со структурой агликона стероидные алкалоиды делятся на спиросолановые и соланидановые алкалоиды. Атом азота в таких веществах выступает в роли вторичного или третичного фрагмента цепи. Спиросолан - это аналог спиростана, содеражащий в себе азот. Соланидады располагают азотом лишь в индолизирующем фрагменте структуры. Существует углеводный компонент некоторого ряда гликоалкалоидов, который обладает собственным тривиальным наименованием.

Еще один гликозид соланидина - это хаконин. Его гликозидный фрагмент (β-хакотриоза) образуется из двух молекул рамнозы и одного моносахарида - глюкозы.

Процесс биосинтеза

Чтобы ответить на вопрос о том, что это такое - сапонины, необходимо ознакомиться с процессом их образования.

Биосинтез сапонина протекает в соответствии с указаниями изопреноидного пути, в ходе которого образуются тритерпены и стероиды. Происходит соединение трех единиц изопрена и пяти углеродных атомов, которые соединяются в «голову-хвост», которую называют 15-углеродным фарнезилдисосфатом. Две молекулы этого вещества подвергаются объединению и образуют 30-углеродный сквален. Полученное вещество (сквален) начинается окисляться до оксидоксвалена, который служит общей точкой исхода большинства реакций по циклизации процессов биосинтеза тритерпеноидов. Полученный оксидосквален начинает циклироваться, но лишь после подвергания раскрытию эпоксидного колечка и протонирования. В конечном итоге образуются карбокатионы.

Процесс нейтрализации протекает с удалением протона, в ходе чего образуется двойная форма связи или кольцо циклопропанов. При реагировании с H 2 O создает гидроксильную группу. Конкретизация стереохимии и форма скелета определяется благодаря набору участвующих в реакции циклаз.

Физиологическое воздействие

Сапонины влияют на организмы самым разнообразным образом. Если рассматривать на уровне гемолитической активности, то стоит отметить их способность создавать комплексное образование с молекулами холестерина. В ходе этого процесса создаются поры, расположенные в полости двойного слоя клеточной мембраны, например внутри эритроцитов. Подобная структура приводит к явлению гемолиза, который происходит при инъекции внутрь вен. Она дает возможность гемоглобину свободно проникать в плазму крови. Важно знать, что лишь глигокизы обладают гемолитической активностью, однако для организма человека или животных они токсичны, если вводить их напрямую в кровь. Пероральный прием снижает вред от сапонинов.

Рассматриваемые вещества обладают высокой токсичностью для животных, обладающих жабрами. Сапонины нарушают функциональные способности жабр, которые, помимо осуществления функции дыхания, участвуют в регуляции процессов солевого обмена и контролируют в организме показатели осмотического давления. Сапонины вызывают паралич и гибель холоднокровных обитателей водоемов. Агликоны не являются токсичным для таких животных.

Сапонины оказывают влияние на показатели проницаемости клеток растений. Некоторая их концентрация может ускорить семенное прорастание, а также взращивание и развитие растения. Использование больших концентраций может приводить к обратному эффекту в отношении упомянутых процессов. А также эти вещества обладают раздражающим воздействием на человеческие глаза, нос и полость рта. В зависимости от их концентрации, они могут вызывать усиление работы каждой железы в организме либо приводить к отравлению, диарее, рвоте и тошноте.

Существуют вещества сапонины, обладающие кардиотоническими и нейротрофными свойствами, среди которых можно отметить: аралозидные, календулозидные, патризидные и клематозидные соединения. Растительные сапонины могут оказывать лекарственное действие.

Способы эксплуатации

Способность к образованию пены позволяет сапонинам находить свое применение в качестве детергентов для огнетушителей. Эмульзирующие особенности дают им возможность использоваться при стабилизации дисперсной системы эмульсии или суспензии. Всегда используются они при изготовлении различных изделий кондитерской промышленности, а также с их помощью варят пиво. Фармакологическое действие сапонинов дает им возможность эксплуатироваться в качестве средств для: отхаркивания, выведения урины, поддержании тонуса организма, в качестве седативного средства или как вакцина.

Подытожим, можно сказать, что сапонины - это такие вещества, основное содержание которых сосредоточено в растительных организмах. Они могут оказывать как благотворное, так и негативное воздействие на организм. Могут быть токсичными и приводить к гибели множества живых существ. Широко применяются в медицине и детально исследуются биохимической отраслью наук.

text_fields

text_fields

arrow_upward

Сапонины (сапонизиды) — гликозиды (гетерозиды), производные стероидов и тритерпеноидов, обладающие гемолитической и поверхностной активностью и токсичностью для холоднокровных животных.

Название «сапонин» (от лат. «sapo» — мыло) впервые появилось в 1819 г., когда из мыльнянки (растения семейства гвоздичных) было выделено вещество, образующее с водой обильную пену.

Классификация сапонинов

text_fields

text_fields

arrow_upward

Сапонины по строению их агликона (сапогенина) делятся на две группы: стероидные и тритерпеновые.

Стероидные сапонины

Сапогенины этих сапонинов являются производными циклопентанпергидрофенантрена, как и агликоны кардиотонических гликозидов. Однако стероидные сапонины не оказывают кардиотонического действия, так как не имеют лактонного кольца при С 17 и ряда других функциональных групп.

Сапогенины всех стероидных сапонинов имеют:

  • у С 3 кольца А – гидроксильную (-ОН) группу;
  • в положении 16-17 — спирокетальную группировку за счет окисления боковой цепи;
  • в положении 5-6 — двойную связь (-CH=CH-);
  • в положениях С 10 и C 13 — метильные (-СН 3) группы.

Углеводная часть молекулы стероидных сапонинов присоединяется в положении С 3 агликона и может содержать от 1 до 9 моносахаридов (глюкоза, галактоза, рамноза, галактуроновая кислота и др.). Моносахариды могут образовывать как линейные, так и разветвленные цепи. Например, стероидный сапонин диосцин (диоскорея ниппонская – Dioscorea nipponica, якорцы стелющиеся – Tribulus terrestris) состоит из агликона диосгенина, к которому присоединяется разветвленная триоза:

Стероидные сапонины встречаются редко, преимущественно в растениях тропического климата. В семействах диоскорейных, норичниковых, спаржевых, амариллисовых стероидные сапонины часто встречаются совместно с кардиотоническими гликозидами (наперстянка, ландыш и др.).

Тритерпеновые сапонины имеют общую формулу (С 5 Н 8) 6 и, в зависимости от количества колец в структуре агликона, делятся на пентациклические и тетрациклические.

а) Тетрациклические — содержат в структуре агликона 4 кольца и подразделяются на производные даммарана (даммарандиол), циклоартана (циклоартенол), зуфана. В основе этой группы лежит даммаран. Производные даммарана легко окисляются с образованием гетероциклов (панаксдиол и панакстриол). Соединения подобного строения обнаружены в женьшене (Panax ginseng), заманихе высокой (Oplopanax elatus), березе (Betula spp.).

б) Пентациклические содержат в структуре агликона 5 колец. Среди этой группы выделяют производные урсана (альфа -амирин), олеанана (бета -амирин), лупана (лупеол), гопана. С медицинской точки зрения, наиболее важными являются производные урсана и олеанана, которые отличаются друг от друга расположением заместителей – метильных (-СН 3) групп в положениях 19 и 20 кольца Е.

Альфа- амирин лежит в основе различных соединений, которые найдены в ортосифоне тычиночном, или почечном чае (Orthosiphon stamineus), лапчатке прямостоячей (Potentilla erecta) и других. Наиболее важным представителем является кислота урсоловая (28-карбокси-альфа -амирин). Кислота урсоловая обнаружена во многих растениях (бруснике — Vaccinium vitis-idaea, клюкве болотной — Oxycoccus palustris и др.), причем встречается как в виде гликозидов, так и свободного агликона.

Бета -амирин лежит в основе следующих соединений:

  • кислота олеаноловая (28-карбокси-бета -амирин). Кислота олеаноловая и ее производные являются агликонами сапонинов аралии высокой (Aralia elata), синюхи голубой (Polemonium caeruleum), конского каштана (Aesculus hippocastanum), первоцвета весеннего (Primula veris), календулы лекарственной (Calendula officinalis), патринии средней (Patrinia intermedia) и др.
  • кислота глицирретиновая (11-оксо-29-карбокси-бета -амирин). Кислота глицирретиновая является агликоном кислоты глицирризиновой (в С 3 положении присоединяется углеводная цепь из двух молекул глюкуроновой кислоты). Кислота глицирризиновая содержится в солодке голой (Glycyrrhiza glabra) и солодке уральской (G. uralensis).

Углеводная часть тритерпеновых сапонинов может присоединяться к агликону в различных положениях:

  • в С 3 положении за счет гидроксильной (-ОН) группы;
  • в С 28 положении за счет карбоксильной (-СООН) группы (при этом связь агликона с сахаром называется ацилгликозидной);
  • с сапогенином могут быть связаны две углеводные цепи (за счет гидроксильной группы в С 3 положении и карбоксильной группы в С 28 положении). В этом случае сапонины относятся к дигликозидам.

Тритерпеновые сапонины могут быть нейтральными и кислыми. Кислотные свойства обусловлены наличием карбоксильных групп сапогенина и углеводной части молекулы. Гидроксильные группы могут быть ацилированы уксусной, тиглиновой, пропионовой, ангеликовой и другими кислотами.

Углеводная часть тритерпеновых сапонизидов может содержать от 1 до 11 моносахаридов (глюкоза, галактоза, рамноза, арабиноза, фруктоза, глюкуроновая и галактуроновая кислоты). Она может быть линейной и разветвленной (например, у аралозидов — сапонинов аралии высокой). Разветвление углеводной цепи происходит от первого сахарного остатка, связанного с агликоном.

Распространение сапонинов в растительном мире

text_fields

text_fields

arrow_upward

Распространение сапонинов в растительном мире, локализация в растениях. Влияние условий обитания и онтогенеза на накопление сапонинов

В растительном мире более широко распространены тритерпеновые сапонины. Они обнаружены в растениях почти 70 семейств. Наиболее богаты тритерпеновыми сапонинами представители семейств аралиевых (Araliaceae), гвоздичных (Caryophyllaceae), синюховых (Polemoniaceae), бобовых (Fabaceae), истодовых (Polygalaceae), сложноцветных (Asteraceae), губоцветных (Lamiaceae) и др.

Стероидные сапонины встречаются значительно реже и обнаружены, главным образом, в растениях семейств диоскорейных (Dioscoreaceae), лилейных (Liliaceae), норичниковых (Scrophulariaceae), парнолистниковых (Zygophyllaceae), лютиковых (Ranunculaceae), амариллисовых (Amaryllidaceae). Стероидные сапонины часто сопровождают в растениях кардиотонические гликозиды (виды наперстянки, ландыша, адонис весенний).

Растения, накапливающие тритерпеновые сапонины, не содержат стероидные, и наоборот.

В растениях сапонины обычно находятся в клеточном соке почти всех органов в растворенном виде.

Сапонины найдены во всех органах растений:

  • в траве (астрагал шерстистоцветковый — Astragalus dasyanthus, хвощ полевой — Equisetum arvense, якорцы стелющиеся — Tribulus terrestris);
  • в листьях (почечный чай — Orthosiphon stamineus);
  • в семенах (конский каштан — Aesculus hippocastanum);
  • в подземных органах (диоскорея ниппонская — Dioscorea nipponica, синюха голубая — Polemonium caeruleum, заманиха высокая — Oplopanax elatus, солодка голая — Glycyrrhiza glabra и с. уральская — G. uralensis, женьшень — Раnах ginseng, аралия высокая (а. маньчжурская) — Aralia elata). В подземных органах накапливается наибольшее количество сапонинов.

Предположительно, сапонины принимают участие в биохимических процессах в растениях:

  • в малых концентрациях они ускоряют прорастание семян, рост и развитие растений, а в больших, наоборот, тормозят. Таким образом, сапонины играют роль гормонов роста растений;
  • сапонины оказывают влияние на проницаемость мембран растительных клеток, что связано с их поверхностной активностью.

На накопление сапонинов влияют стадии онтогенеза растений. Максимальное количество сапонинов в сырье содержится в фазы:

  • бутонизации и начала цветения (ортосифон тычиночный и астрагал шерстистоцветковый);
  • в конце вегетации, когда биомасса лекарственного растительного сырья максимальна (солодки, синюха, заманиха, аралия, женьшень, диоскорея);
  • в период плодоношения (конский каштан).
  • дикорастущая синюха голубая достигает максимальной продуктивности к 5-6-му году жизни, а в культуре — к 2-3-му году. При этом содержание сапонинов в подземных органах находится на одном уровне;
  • культивируемый женьшень рекомендуется собирать на 5-6-ой год, т.к. корни быстро растут до 3-х лет и далее их рост замедляется, а с 13 лет наблюдается уменьшение биомассы корней. Это связано с постепенным отмиранием боковых корней.

Влияние факторов внешней среды на накопление сапонинов строго специфично. Среди них трудно выявить общие закономерности для всех растений. Отметим лишь отдельные моменты:

  • растения семейства аралиевых являются эндемиками Дальнего Востока, где сложился особый климатический и почвенный режим;
  • зависимость накопления глицирризиновой кислоты от типа почвы и ее засоленности характерна для солодки. Чем больше засоленность, тем меньше глицирризиновой кислоты содержат корни солодки. Повышение влажности почвы способствует накоплению глицирризиновой кислоты.

Сырьевая база растений, содержащих сапонины

text_fields

text_fields

arrow_upward

Синюха голубая растет по опушкам и вдоль лесных дорог в лесной и лесостепной зонах европейской части России и Западной Сибири.

Женьшень, заманиха, аралия, диоскорея ниппонская встречаются в лесах Дальнего Востока (Приморский, Хабаровский края).

Солодки голая и уральская часто образуют сплошные заросли в поймах и долинах рек в степных и пустынных районах европейской части России и Сибири. В этих же регионах, как сорняк, встречаются якорцы стелющиеся.

Синюха голубая не образует крупных зарослей, пригодных для промышленных заготовок, в связи, с чем ее культивируют. Женьшень культивируют на Дальнем Востоке.

Ортосифон тычиночный импортируют из стран тропической Азии.

В последние годы перспективным является метод культуры тканей. Он заключается в выращивании на определенных питательных средах биомассы сырьевой части лекарственных растений. Полученная таким образом биомасса используется в дальнейшем для получения лекарственных препаратов.

В России метод культуры тканей был разработан и освоен на примере женьшеня. Культура тканей женьшеня под названием «Биоженьшень» используется для получения настойки.

Физические свойства сапонинов

text_fields

text_fields

arrow_upward

Физические свойства сапонинов

Сапонины — бесцветные или желтоватые аморфные вещества. В кристаллическом состоянии выделены гликозиды, имеющие в углеводной цепи до 4 моносахаридов. Оптически активны.

Гликозиды растворимы в воде. Растворимость увеличивается с возрастанием количества моносахаридов в углеводной цепи. В разведенных (60-70 %) спиртах растворяются на холоду; в более крепких (80-90 %) спиртах — только при нагревании, а при охлаждении выпадают в осадок. Нерастворимы в органических растворителях (ацетон, хлороформ, бензол).

Свободные сапогенины не растворяются в воде и хорошо растворимы в органических растворителях.

В зависимости от рН водных извлечений сапонины делят на:

  • нейтральные — стероидные и тетрациклические тритерпеновые сапонины;
  • кислые — пентациклические тритерпеновые сапонины. Их кислотность обусловлена наличием карбоксильных (-СООН) групп в структуре агликона или присутствием уроновых кислот в углеводной цепи.

Специфическим свойством сапонинов является их способность снижать поверхностное натяжение жидкостей (воды) и давать при встряхивании стойкую обильную пену. Такая поверхностная активность связана с наличием в молекулах сапонинов одновременно как гидрофильного, так и липофильного остатков.

Химические свойства сапонинов

text_fields

text_fields

arrow_upward

Химические свойства обусловлены структурой агликона, наличием отдельных функциональных групп, а также присутствием гликозидной связи.

Сапонины гидролизуются под влиянием ферментов и кислот. Производные кислот олеаноловой и глицирретиновой гидролизуются под воздействием щелочей.

При взаимодействии с кислотными реагентами (сурьмы (III) хлорид, сурьмы (V) хлорид, железа (III) хлорид, кислота серная концентрированная и др.) образуют окрашенные продукты.

Кислые сапонины образуют нерастворимые комплексы с солями тяжелых металлов (Ва, Рb, Cu).

Сапонины способны образовывать комплексы с белками, стеринами, липидами, фенольными соединениями. В составе комплексов сапонины не обладают гемолитической и поверхностной активностью.

Сапонины, имеющие в своей основе стероидное ядро, вступают в специфическую реакцию Либермана–Бурхарда.

Биологические свойства сапонинов

text_fields

text_fields

arrow_upward

Сапонины обладают гемолитической активностью. Они способны растворять липидную часть оболочки эритроцитов. В результате этого оболочка из полупроницаемой становится проницаемой. Гемоглобин свободно поступает в плазму крови и растворяется в ней. Образуется красный прозрачный раствор — «лаковая» кровь.

Гемолитической активностью обладают только гликозиды. В связи с этим сапонины не применяются для внутривенного введения, т.к. вызывают анемию. При приеме внутрь, после гидролиза в желудочно-кишечном тракте до агликонов, сапонины теряют гемолитическую активность.

Гемолиз эритроцитов вызывают не все сапонины. Этим свойством не обладают сапонины солодки.

Сапонины токсичны для холоднокровных животных (рыбы, лягушки, круглые черви). Они нарушают функцию жабр, которые являются не только органом дыхания, но и регулятором солевого осмотического давления в организме. Сапонины парализуют или вызывают гибель холоднокровных животных даже в больших разведениях (1:1 000000).

Агликоны сапонинов для холоднокровных животных не токсичны.

Оценка качества сырья, содержащего сапонины. Методы анализа

text_fields

text_fields

arrow_upward

Наличие сапонинов в лекарственном растительном сырье можно установить при помощи качественных реакций, которые проводят непосредственно с сырьем или с водным извлечением из него.

Качественные реакции

Качественные реакции на сапонины основаны на их физических, химических и биологических свойствах.

Государственная фармакопея XI издания (вып. 2) рекомендует использовать качественные реакции для подтверждения подлинности для трех видов сырья.

  1. Корневища с корнями синюхи голубой. С водным извлечением проводят реакцию пенообразования, основанную на способности сапонинов снижать поверхностное натяжение жидкости (воды) и давать в отваре стойкую обильную пену после встряхивания.
  2. Корни аралии маньчжурской (а. высокой). Метанольное извлечение хроматографируют в тонком закрепленном слое силикагеля (на пластинках «Силуфол») в системе растворителей хлороформ-метанол-вода (61:32:7). В качестве свидетеля используют раствор сапарала. Хроматограмму проявляют 20 % раствором кислоты серной и нагревают в сушильном шкафу (t = 105 °C) в течение 10 мин. Появляются пятна вишневого цвета.
  3. Корни женьшеня.

а) Реакция с порошком корней женьшеня (на гликозиды). При нанесении кислоты серной концентрированной на порошок корней женьшеня через 1-2 минуты появляется кирпично-красное окрашивание, переходящее в красно-фиолетовое, а затем — в фиолетовое.

б) Наличие панаксозидов доказывают при помощи разделения извлечения из корней женьшеня в тонком слое силикагеля и последующего проявления полученной хроматограммы раствором кислоты фосфорно-вольфрамовой при нагревании. Панаксозиды проявляются в виде розовых пятен.

Kоличественноe определениe

Общих методов количественного определения сапонинов в лекарственном растительном сырье нет. Чаще всего используют методы:

  1. Потенциометрический метод . Метод основан на определении изменения электродвижущей силы (ЭДС) в результате титрования. Метод используется для определения суммы аралозидов в корнях аралии маньчжурской (а. высокой).

Этапы определения:

  • подготовительный;
  • экстракция аралозидов метиловым спиртом и их кислотный гидролиз;
  • очистка от сопутствующих веществ — осаждение кислоты олеаноловой в результате смены растворителя (разбавление спиртового извлечения водой и охлаждение);
  • растворение кислоты олеаноловой в горячей смеси метилового и изобутилового спиртов (1:1,5);
  • количественное определениетитрование раствором натрия гидроксида (0,1 моль/л) в смеси метилового спирта и бензола:

Точку эквивалентности определяют потенциометрически.

  1. Спектрофотометрический метод . Метод основан на способности сапонинов и их окрашенных комплексов поглощать монохроматический свет при определенной длине волны. Метод предложен для определения содержания сапонинов в следующих видах сырья:

а) корневища с корнями диоскореи ниппонской. Проводят кислотный гидролиз сапонинов с последующим проведением реакции свободного агликона (диосгенин) с реактивом (пара -диметиламинобензальдегид). Образуется окрашенный комплекс;

б) корни солодки. Проводят осаждение кислоты глицирризиновой концентрированным раствором аммиака. Осадок растворяют и определяют оптическую плотность полученного раствора.

  1. Гравиметрический метод — определение экстрактивных веществ. Метод основан на определении сухого остатка после высушивания суммы веществ, извлеченных из сырья соответствующим экстрагентом. Метод предложен для оценки качества сырья женьшеня, почечного чая, синюхи голубой, солодки.

В сырье астрагала шерстистоцветкового и заманихи высокой количественное содержание биологически активных веществ не определяют.

Особенности сбора, сушки и хранения сырья, содержащего сапонины

text_fields

text_fields

arrow_upward

Заготовку сырья, содержащего сапонины, проводят в период их максимального накопления по правилам заготовки гликозидсодержащего сырья. Особенностями заготовки и сушки являются:

  • корни солодки заготавливают с марта по ноябрь;
  • корни солодки, корневища с корнями диоскореи ниппонской, траву якорцев стелющихся допускается сушить на солнце.

Хранится сырье по общему списку, сроки хранения индивидуальны для каждого вида сырья. При переработке сапонинсодержащего сырья следует принимать меры предосторожности, поскольку при вдыхании возможно возникновение аллергических реакций.

Пути использования сырья, содержащего сапонины

text_fields

text_fields

arrow_upward

Лекарственное растительное сырье, содержащее сапонины, используется для получения разнообразных лекарственных форм и препаратов.

I. Экстемпоральные лекарственные формы (отпускают без рецепта врача, приказ МЗСР РФ № 587 от 13.09.05).

  1. Настои:
  • листья почечного чая;
  • трава астрагала шерстистоцветкового.
  1. Отвары:
  • корневища с корнями синюхи голубой;
  • корни солодки.
  1. Порошок корней солодки сложный.
  2. Сборы:
  • сбор отхаркивающий № 2;
  • сбор «Арфазетин» (входят корни аралии или корневища с корнями заманихи);
  • сборы мочегонные, противоязвенные и т.д.

II. Экстракционные (галеновые) препараты.

  1. Настойки:
  • женьшеня, биомассы женьшеня;
  • заманихи;
  • аралии.
  1. Экстракты:
  • сухой экстракт корней солодки;
  • густой экстракт корней солодки (входит в состав грудного эликсира).

III. Препараты, содержащие сумму сапонинов.

  1. «Сапарал» — сумма аммонийных солей аралозидов.
  2. «Полиспонин» — сумма сапонинов диоскореи ниппонской.
  3. «Трибуспонин» — сумма сапонинов якорцев стелющихся.
  4. IV. Препараты индивидуальных сапонинов.
  5. «Глицирам» — аммонийная соль глицирризиновой кислоты.
  6. «Глидеринина мазь» (глидеринин выделен из экстракта корней солодки).
  7. V. Полусинтетические препараты.
  8. «Кортизон» (гормон коры надпочечников) — получают на основе стероидного сапогенина диосгенина.
  9. VI. Комплексные препараты.
  10. «Амтерсол» (сироп, в состав входит экстракт корней солодки).
  11. Грудной эликсир.
  12. Настойка биоженьшеня с витаминами и минеральными солями.
  13. «Сафинор» (в состав входит сапарал).

VII. Препараты на основе других групп биологически активных веществ.

  1. «Ликвиритон» — спазмолитическое, противовоспалительное, антацидное средство.
  2. «Флакарбин» — спазмолитическое, противовоспалительное, капилляроукрепляющее средство.

Оба препарата получены на основе флавоноидов корней солодки. Применяются при язвенной болезни желудка и двенадцатиперстной кишки, а также при гиперацидных гастритах.

Сапонины используют также в пищевой промышленности, в технике (для изготовления огнетушителей), в парфюмерии (как мягкие моющие средства).

Медицинское применение сырья и препаратов, содержащих сапонины

text_fields

text_fields

arrow_upward

Сапонины обладают широким спектром фармакологического действия.

  1. Гипохолестеринемическое и противосклеротическое действие. Сапонины обладают способностью снижать уровень холестерина в крови, что приводит к снижению склеротических изменений в кровеносных сосудах, уменьшению их ломкости и т.д. Действие характерно для стероидных сапонинов диоскореи ниппонской и якорцев стелющихся.
  2. Тонизирующее , стимулирующее , адаптогенное действие. Характерно для сапонинов женьшеня, заманихи высокой, аралии высокой. Их препараты применяют при переутомлении, усталости, гипотонии, как иммуномодуляторы.
  3. Отхаркивающее действие. Сапонины повышают секрецию желез верхних дыхательных путей. Это ведет к разжижению мокроты, что облегчает ее эвакуацию. Такое действие характерно для сапонинов солодки и синюхи голубой.
  4. Диуретическое действие характерно для сырья почечного чая и астрагала шерстистоцветкового, которые применяются при отеках сердечного происхождения.
  5. Легкое слабительное действие характерно для корней солодки.
  6. Кортикотропное действие (подобное действию кортизона и других гормонов коркового слоя надпочечников). Регулируется водно-солевой обмен, проявляется противовоспалительное и антиаллергическое действие. Характерно для сырья солодки, применяют при астме, экземе, дерматитах.
  7. Седативное действие характерно для сырья синюхи голубой.
  8. Гипотензивное действие при начальных стадиях сердечно-сосудистой недостаточности проявляют биологически активные вещества астрагала шерстистоцветкового.
  9. Противоязвенное действие проявляется у сбора, в состав которого входит сырье синюхи голубой и сушеницы топяной.

Сердечные гликозиды являются одной из основных групп лекарственных средств, используемых в терапии острой и хронической сердечной недостаточности (ОСН и ХСН). Вызывает доверие то, что источником для производства гликозидов являются известные растения, например, ландыш майский, или наперстянка, а также горицвет.

Эти лекарственные средства помогают значительно повысить работоспособность сердечной мышцы, что отражается на эффективности работы самого сердца. Однако приемом сердечных гликозидов категорически нельзя увлекаться – большие дозы представляют собой сердечный яд.

Несмотря на то, что сердечные гликозиды (СГ) не оказывают влияния на общую продолжительность жизни пациента, их применение позволяет:

  • значительно улучшить качество жизни;
  • уменьшить выраженность симптоматики СН;
  • снизить частоту декомпенсаций заболевания и связанных с ними госпитализаций.

Эти препараты позволяют значительно снизить количество приступов у пациентов с мерцательной аритмией на фоне хронической недостаточности.

Сердечные гликозиды – это обширный класс безазотистых соединений, имеющих растительное происхождение и содержащих сахара и агликоны. Кардиотоническая активность СГ обуславливается именно агликонами. А наличие сахаров (глюкозы, рамнозы, галактозы) обеспечивает степень биодоступности сердечных гликозидов и их способность проникать сквозь клеточные мембраны и фиксироваться в тканях.

Сердечные гликозиды содержат различные растения: ландыши, различны виды наперстянки, горицветы, желтушник, строфант. В народной медицине они издавна использовались в качестве противоотечных средств. Их воздействие на сердце и способность нормализировать кровообращение были установлены около двухсот лет назад.

Справочно. На данный момент препараты сердечных гликозидов входят в число наиболее эффективных для терапии СН с выраженным ослаблением способности сердечной мышцы к сокращению, частыми декомпенсациями и тахисистолической мерцательной аритмией.

Механизм действия гликозидов

Сердечная недостаточность сопровождается значительным снижением коэффициента полезного действия сердца. То есть, при уменьшении
способности сердца сокращаться, одновременно увеличивается расход миокардом энергии и кислорода для осуществления своей работы.

Развитие сердечной недостаточности сопровождается:

  • нарушением равновесия ионов;
  • изменениями в обмене белков и липидов;
  • выраженным снижением ударного объема;
  • повышением венозного давления и венозным застоем;
  • нарастанием гипоксии и тахикардии;
  • нарушением кровотока в капиллярах;
  • отеками;
  • нарушением работы почек, снижением диуреза;
  • появлением одышки и цианоза.

Применение СГ позволяет:

  • нормализировать равновесие ионов (в клетках миокарда увеличивается содержание свободных кальциевых ионов, необходимых для синтезирования актомиозина – белка, используемого для осуществления сократительной деятельности сердца);
  • нормализировать осуществление метаболизма и энергетического обмена в миокарде;
  • увеличивать систолу (желудочковые сокращения) и ударный объем;
  • повышать АД и замедлять ЧСС;
  • удлинять диастолический период (расслабление миокарда в периоде между сокращениями);
  • угнетать проводимость сердца, устраняя развитие рефлекторной тахикардии;
  • стабилизировать показатели гемодинамики устранять явления застоя крови, оказывать противоотечный эффект, нормализировать работу почек и восстанавливать нормальный диурез.

Некоторые гликозидные препараты, например, сердечный гликозид, полученный из ландыша или горицвета, дополнительно влияют на ЦНС (седативное воздействие).

Классификация

Единой классификации сердечных гликозидов не существует. Как правило, используют разделение СГ по происхождению и длительности действия.

Продолжительность воздействия препарата зависит от способности гликозида прочно связываться с белками, а также от скорости его биотрансформирования и утилизации из организма.

Средства длительного действия

К СГ с длительным действием и выраженным эффектом кумуляции (способности к накоплению при последующих применениях) относят подгруппу наперстянки. Гликозиды с длительным действием, после перорального приема, начинают оказывать максимально кардиотоническое воздействие через восемь- двенадцать часов после приема. Эффект от длительных СГ продолжается от десяти и более суток.

Справочно. После введения препаратов в вену, они начинают действовать в течение от тридцати до 90-та минут. Максимальная эффективность лекарства проявляется через 4-8 часов.

Из этой группы гликозидов наиболее часто используют препараты дигитоксин и дигоксин, полученные из пурпурной и крупноцветной наперстянки.

Средства средней продолжительности действия

К СГ, обладающим средней продолжительностью воздействия, относят сердечные гликозиды, полученные из ржавой и шерстистой наперстянки (целанид и дигоксин), а также препарат горицвета.

Олеаноловая кислота

Растения, содержащие тритерпеновые сапонины, распространены довольно широко (семейства синюховых, астровых, гвоздичных, яснотковых, валериановых, аралиевых, бобовых). Тритерпеновые гликозиды состоят из агликона (генина) тритерпеновой природы и углеводной части. По характеру агликона они могут относиться к - или -амириновому, лупановому, гопановому, даммарановому, ланостановому и голостановому рядам. В составе углеводной части найдены следующие моносахариды: D -глюкоза, 3-О -метил-О -глюкоза, D -галактоза, D -ксилоза, D -хиновоза, L -арабиноза, L -рибоза, D -фукоза, L -рамноза, ликсоза и D -глюкуроновая кислота и другие . Они образуют одну или две углеводные цепи линейной или разветвленной структуры. В настоящее время предложено несколько вариантов классификации тритерпеновых гликозидов, учитывающих те или иные особенности углеводной части. Так, вещества, содержащие углеводную цепь по карбоксильной группе агликона, Л.Г. Мжельская и Н.К. Абубакиров (1968 г.) предлагают называть ацилозидами. Выделяют бисдесмозидные и монодесмозидные гликозиды. В состав некоторых гликозидов входят остатки органических кислот (например, ангеликовой, тиглиновой, коричной, уксусной и др.), этерифицирующих преимущественно агликоны.

Установление полной структуры тритерпеновых гликозидов долгое время было невозможным из-за отсутствия этих веществ в чистом виде. В 60-е годы под руководством Н. К. Кочеткова были разработаны аналитические и препаративные методы разделения довольно сложных смесей гликозидов. Благодаря этому удалось установить структуру тритерпеновых гликозидов с большой молекулярной массой, получивших название олигозидов. Первым представителем этого класса веществ оказался гипсозид .

Достижения советской школы химиков позволили поставить на научную основу исследование гликозидов и занять лидирующее положение в мире в этой области химии природных соединений. Так, если к 1960 г. в литературе было описано строение лишь четырех гликозидов тритерпеновой природы, то через 20 лет их число приблизилось уже к 200, причем более 150 из них изучены советскими учеными . Эти соединения в подавляющем большинстве содержат в качестве агликонов хедерагенин, гипсогенин, олеаноловую и эхиноцпстовую кислоты, относящиеся к β-амириновому ряду.

Можно считать установленным, что наличие тритерпеновых гликозидов в растениях отдельных семейств может служить хемотаксономическим признаком. Наиболее богаты этими веществами следующие семейства: гвоздичные, лютиковые, бобовые, аралиевые, сложноцветные, сапиндовые и др.

1.1.3. Характеристика углеводной части. В состав углеводной части входят следующие сахара: D -глюкоза, D-галактоза, L -рамноза, L -арабиноза, D -ксилоза, L -фруктоза, D -глюкуроновая и D -галактуроновая кислоты. Многие сапонины содержат в углеводной части несколько остатков моносахаридов. Углеводная часть чаще присоединяется к гидроксильной группе при углеродном атоме С -3 кольца А углеродного скелета. У некоторых тритерпеновых гликозидов углеводная цепь присоединяется к углеродному атому С -28 посредством O -ацилгликозидной связи. По количеству молекул моносахаридов сапонины, как и гликозиды, подразделяются на монозиды, биозиды, триозиды, тетразиды, пентозиды и олигозиды. Тритерпеновые сапонины имеют до 10 и более моносахоридных остатков, которые могут образовывать две сахарные цепочки. Сахарная цепочка бывает линейной (у большинства гликозидов) или разветвленной (например, у аралозида В ).

1.1.4. Физико-химические свойства. Бесцветные, реже желтоватые аморфные или кристаллические вещества (в основном стероидные сапонины). Сапонины оптически активны. Растворимость зависит от числа моносахаридных остатков: при 4 и более - хорошо растворимы в воде; при 2-4 - плохо растворимы в воде, но хорошо в метаноле. Понижают поверхностное натяжение. Легко гидролизуются ферментами и кислотами.

1.1.5. Тритерпеновые гликозиды в организме-продуценте. Показано, что тритерпеновые гликозиды локализуются в жизненно важных органах и тканях. В больших количествах они обнаружены в листьях, цветках, семенах, плодах, корнях, корнеплодах и стеблях .

Выявлена общая закономерность локализации гликозидов в листьях растений рода Hedera . Эти соединения обнаруживаются в основном в полисадной части мезофилла листа и эпидермальных клетках вдоль главных жилок. Внутри клетки они локализуются на поверхности хлоропластов в виде пятнышек различного размера. По данным Педерсена, тритерпеновые гликозиды преимущественно концентрируются в наружном слое коры корней проростков люцерны. Показано, что содержание и скорость биосинтеза тритерпеновых гликозидов изменяются в широких пределах в зависимости от возраста и физиологического состояния организма-продуцента. Так, уровень гликозидов в люцерне Medicago sativa L. существенно связан с сортом, сроком уборки урожая и долей листьев в общей растительной массе. В люцерне трех сроков сбора содержание гликозидов составило 1.55; 3.04 и 2.97 %, причем концентрация в листьях была выше, чем в стеблях (соответственно 2.26-3.43 и 1.11-1.33 %) .

При развитии подсолнечника содержание тритерпеноидов в верхних листьях возрастает, а в нижних листьях и корнях падает .

Несколько иная закономерность выявлена М.К. Яворской и А.Д. Хоменко (1973 г.), которые установили, что в онтогенезе концентрация гликозидов в листьях сахарной свеклы изменяется незначительно. Наиболее высокий уровень этих веществ обнаружен в черешках 45-дневных растений и по мере их роста он постепенно снижается.

Значительные колебания в содержании тритерпеноидов наблюдаются в семенах тропического растения Balanites aegyptiaca в период первых девяти дней прорастания. Максимальная концентрация сапогенинов отмечается к пятому дню прорастания семян, минимальная - к девятому.

Интересные данные получены при изучении содержания отдельных тритерпеноидов и стероидов в цветках ноготков Calendula officinalis на протяжении шести стадий их развития: от бутона (5 дней) до увядания цветка (27 дней). Начиная с 12 дня развития, чашелистники изучались отдельно от самого цветка. Показано, что на протяжении всего периода развития цветка вплоть до его полной зрелости содержание всех форм тритерпеноидов и стеринов увеличивается. Биосинтез свободных -амирина, эритродиола и гликозидов олеаноловой кислоты, а также -ситостерина, стигмастерина и изофукостерина происходит как в самом цветке, так и в зеленых растениях. При увядании цветка концентрация тритерпеноидов и стеринов уменьшается. Как полагают авторы, это связано с перемещением гликозидов олеаноловой кислоты в корневую часть растения. В цветках календулы присутствуют пять гликозидов олеаноловой кислоты, для биосинтеза которых в качестве предшественника использовалась уксусная кислота.

При изучении скорости биосинтеза тритерпеноидов в различных органах календулы лекарственной обнаружено, что включение 1-14O -ацетата в тритерпеноиды составило (%): корни 0,023, листья 0,14, цветки 0,51 . Высокая скорость биосинтеза тритерпеновых гликозидов обнаружена у молодых растений и в прорастающих семенах календулы. Примечательно, что в зародыше синтезируются тритерпеноиды только олеаноловой кислоты, а семядолях - только урсановой и лупановой групп. Как показали дальнейшие исследования, формирование углеводной цепи у C -3-атома олеаноловой кислоты происходит независимо от того, свободна или гликозилирована COOH-группа в положении C -17 .

На биосинтез тритерпеноидов в растениях большое влияние оказывает интенсивность света, при этом обнаруживается прямая зависимость между интенсивностью фотосинтеза и скоростью синтеза тритерпепоидов. Между жирными кислотами и тритерпеноидами существует конкуренция за предшественник, который образуется в процессе фотосинтеза .

Значительные колебания в содержании тритерпеновых гликозидов отмечены в организме голотурий. Показано, например, что наиболее высокая концентрация гликозидов у Holothuria leucospilota B. выявлена в кювьеровой железе и яйцеклетках. По мере созревания последних уровень гликозидов увеличивается, причем в яйцеклетках максимум приходится на май - июль, а в кювьеровой железе - на март - июль .

В.С. Левин и В.А. Стоник изучали изменение уровня тритерненовых гликозидов у Cucumaria traudatrix в зависимости от возраста животного и сезона года. Установлено, что количество гликозидов у молодых неполовозрелых особей относительно невелико. В период роста голотурий до достижения половозрелости оно резко увеличивается, а при дальнейшем росте животных остается почти постоянным. Содержание гликозидов в стенках тела голотурий Cucumaria fraudatrix осталось в период с декабря по май на одном уровне, тогда как в гонадах значительно уменьшилось. Авторы не исключают возможность участия гликозидов в процессе размножения.

Гликозиды в изучаемых объектах представляют собой сложные смеси веществ, которые по своей структуре весьма близки. Чаще всего различие состоит в длине углеводной цепи по гидроксильной группе. При переходе от простых гликозидов к более сложным происходит ее удлинение на один моносахарид, в то время как O -ацилозидная часть во всех соединениях одна и та же (или полностью отсутствует). На основании большого фактического материала было сделано предположение, что биосинтез углеводной цепи по гидроксильной группе генина протекает благодаря ее постепенному удлинению, а по карбоксилу агликоиа разовым присоединением целого фрагмента .