Бактерии в кислой среде. Кислотно - щелочное равновесие и предпочтение паразитов


Гнилостные бактерии вызывают распад белков. В зависимости от глубины распада и образующихся конечных продуктов могут возникать различные пороки пищевых продуктов. Эти микроорганизмы широко распространены в природе. Они встречаются в почве, воде, воздухе, на пищевых продуктах, а также в кишечнике человека и животных. К гнилостным микроорганизмам относятся аэробные споровые и бесспоровые палочки, спорообразующие анаэробы, факультативно-анаэробные бесспоровые палочки. Они являются основными возбудителями порчи молочных продуктов, вызывают распад белков (протеолиз), в результате чего могут возникать различные пороки пищевых продуктов, зависящие от глубины распада белка. Антагонистами гнилостных являются молочнокислые бактерии, поэтому гнилостный процесс распада продукта возникает там, где не идет кисломолочный процесс.

Протеолиз (протеолитические свойства) изучают посевом микроорганизмов в молоко, молочный агар, мясопептонный желатин (МПЖ) и в свернутую кровяную сыворотку. Свернувшийся белок молока (казеин) под влиянием протеолитических ферментов может свертываться с отделением сыворотки (пептонизация) или растворяться (протеолиз). На молочном агаре вокруг колоний протеолитических микроорганизмов образуются широкие зоны просветления молока. В МПЖ посев производят уколом внутрь столбика среды. Посевы выращивают 5-7 сут при комнатной температуре. Микробы, обладающие протеолитическими свойствами, разжижают желатин. Микроорганизмы, не обладающие протеолитической способностью, растут в МПЖ без его разжижения. В посевах на свернутой кровяной сыворотке протеолитические микроорганизмы также вызывают разжижение, а микробы, не обладающие этим свойством, не изменяют ее консистенцию.

При изучении протеолитических свойств определяют также способность микроорганизмов образовывать индол, сероводород, аммиак, т. е. расщеплять белки до конечных газообразных продуктов. Гнилостные бактерии имеют очень широкое распространение. Они встречаются в почве, воде, воздухе, кишечнике человека и животных, на пищевых продуктах. К этим микроорганизмам относятся спорообразующие аэробные и анаэробные палочки, пигментообразующие и факультативно-анаэробные бесспоровые бактерии.

Аэробные бесспоровые палочки

Наибольшее влияние на качество пищевых продуктов оказывают следующие бактерии этой группы: Bacterium prodigiosum, Pseudomonas fluorescens, Pseudomonas pyoceanea (aeruginosa).

Bacterium prodigiosum - очень мелкая палочка (1X 0,5 мкм), подвижная, спор и капсул не образует. Строгий аэроб, на МПА вырастают мелкие, круглые, ярко-красные, блестящие, сочные колонии. Низкие температуры наиболее благоприятны для образования пигмента. Пигмент нерастворим в воде, но растворим в хлороформе, спирте, эфире, бензоле. При росте в жидких средах также образует красный пигмент. Развивается при рН 6,5. Оптимальная температура развития 25°С (может расти и при 20°С). Разжижает желатин послойно, молоко свертывает и пептонизирует; образует аммиак, иногда сероводород и индол; глюкозу и лактозу не ферментирует.

Pseudomonas fluorescens –небольшая тонкая палочка размером 1-2 X 0,6 мкм, подвижная, спор и капсул не образует, грамотрицательна. Строгий аэроб, но встречаются разновидности, которые могут развиваться и при недостатке кислорода. На МПА и других плотных питательных средах вырастают сочные, блестящие колонии, имеющие тенденцию к слиянию и образованию зеленовато-желтого пигмента, растворимого в воде; на жидких средах они также образуют пигмент. МПБ мутнеет, иногда появляется пленка. Чувствителен к кислой реакции среды. Оптимальная температура развития 25°С, но может развиваться и при 5-8 °С. Характеризуется высокой ферментативной активностью: разжижает желатин и кровяную сыворотку, свертывает и пептонизирует молоко, лакмусовое молоко синеет. Образует сероводород и аммиак, не образует индола; большинство из них способны расщеплять клетчатку и крахмал. Многие штаммы Pseudomonas fluorescens продуцируют ферменты липазу и лецитиназу; дают положительные реакции на каталазу, цитохромоксидазу, оксидазу. Pseudomonas fluorescens - сильные аммонификаторы. Глюкозу и лактозу не ферментируют.

Pseudomonas pyoceanea. Небольшая палочка (2- 3 X 0,6 мкм), подвижна, спор и капсул не образует, грамотрицательна. Аэроб, на МПА дает расплывчатые, непрозрачные, окрашенные в зеленовато-синий или бирюзово-синий цвет колонии вследствие образования пигментов, растворимых в хлороформе. Вшывает помутнение МПБ (иногда появления пленки) и образование пигментов (желтого - флюоресцина и голубого - пиоцианина). Как и все гнилостные бактерии, чувствителен к кислой реакции среды. Оптимальная температура развития 37°С. Быстро разжижает желатин и свернутую кровяную сыворотку, свертывает и пептонизирует молоко; лакмус синеет, образует аммиак и сероводород, не образует индола Обладает липолитической способностью; дает положительные реакции на каталазу, оксидазу, цигохромоксидазу (эти свойства присущи представителям рода Pseudomonas). Некоторые штаммы расщепляют крахмал и клетчатку. Лактозу и сахарозу не ферментирует.

Спорообразующие анаэробы

Наиболее часто вызывает порчу пищевых продуктов clostridium putrificus, Clostridium sporogenes, Closntridium perfringens.

Clostridium putrificus. Длинная палочка (7 - 9 X 0,4 - 0,7 мкм), подвижна (иногда образует цепочки), формирует шаровидные споры, размер которых превышает диаметр вегетативной формы. Термоустойчивость спор довольно высокая; капсул не образует; по Граму красится положительно. Анаэроб, колонии на агаре имеют вид клубка волос, непрозрачные, вязкие; вызывает помутнение. МПБ. Протеолитические свойства ярко выражены. Разжижает желатин и кровяную сыворотку, молоко свертывает и пептонизирует, образует сероводород, аммиак, индол, вызывает почернение мозговой среды, на кровяном агаре образует зону гемолиза, обладает липолитическими свойствами; не обладает сахаролитическими свойствами.

Clostridium sporogenes. Крупная палочка с закругленными концами, размером 3 - 7 X 0,6 - 0,9 мкм, располагается отдельными клетками и в виде цепочек, подвижна, очень быстро образует споры. Споры Clostridium sporogenes сохраняют жизнеспособность после 30-минутного нагревания на водяной бане, а также после 20-минутного выдерживания в автоклаве при 120°С. Капсул не образует. По Граму красится положительно, Анаэроб, колонии на агаре мелкие, прозрачные, в дальнейшем становятся непрозрачными. Clostridium sporogenes обладает очень сильными протеолитическими свойствами, обусловливающими гнилостный распад белков с образованием газов. Разжижает желатин и кровяную сыворотку; вызывает пептонизацию молока и почернение мозговой среды; образует сероводород; разлагает с образованием кислоты и газа галактозу, мальтозу, декстрин, левулезу, глицерин, маннит, сорбит. Оптимальная температура роста 37°С, но может расти и при 50°С.

Факультативно-анаэробные бесспоровые палочки

К факультативно-анаэробным бесспоровым палочкам относятся Proteus vulgaris и Escherichia coli. В 1885 г. Эшерих открыл микроорганизм, который получил название Escherichia coli (кишечная палочка). Этот микроорганизм является постоянным обитателем толстого отдела кишечника человека и животных. Кроме Е. coli в группу кишечных бактерий входят эпифитные и фитопатогенные виды, а также виды, экология (происхождение) которых пока не установлена. Морфология - это короткие (длина 1-3 мкм, ширина 0,5-0,8 мкм) полиморфные подвижные и неподвижные грамотрицательные палочки, не образующие спор.

Культуральные свойства. Бактерии хорошо растут на простых питательных средах: мясопептонном бульоне (МПБ), мясопептонном агаре (МПА). На МПБ дают обильный рост при значительном помутнении среды; осадок небольшой, сероватого цвета, легко разбивающийся. Образуют пристеночное кольцо, пленка на поверхности бульона обычно отсутствует. На МПА колонии прозрачные с серовато-голубым отливом, легко сливающиеся между собой. На среде Эндо образуют плоские красные колонии средней величины. Красные колонии могут быть с темным металлическим блеском (Е. соli) или без блеска (Е.аеrogenes).Для лактозоотрицательных вариантов кишечной палочки (В.раrасоli) характерны бесцветные колонии. Им свойственна широкая приспособительная изменчивость, в результате которой возникают разнообразные варианты, что усложняет их классификацию.

Биохимические свойства. Большинство бактерий не разжижают желатина, свертывают молоко, расщепляют пептоны с образованием аминов, аммиака, сероводорода, обладают высокой ферментативной активностью в отношении лактозы, глюкозы и других сахаров, а также спиртов. Обладают оксидазной активностью. По способности расщеплять лактозу при температуре 37°С БГКП делят на лактозоотрицательные и лактозоположительные кишечные палочки (ЛКП), или колиформные, которые нормируются по международным стандартам. Из группы ЛКП выделяются фекальные кишечные палочки (ФКП), способные ферментировать лактозу при температуре 44,5°С. К ним относится Е. соli, не растущая на цитратной среде.

Устойчивость. Бактерии групп кишечных палочек обезвреживаются обычными методами пастеризации (65 - 75 °С). При 60 С кишечная палочка погибает через 15 минут. 1% раствор фенола вызывает гибель микроба через 5-15 минут, сулема в разведении 1:1000 - через 2 мин., устойчивы к действию многих анилиновых красителей.

Аэробные споровые палочки

Гнилостные аэробные споровые палочки Bacillus сеreus, Bacillus mycoides, Bacillus mesentericus, Bacillus megatherium, Bacillus subtilis, наиболее часто вызывают пороки пищевых продуктов. Bacillus cereus-палочка длиной 8-9 мкм, шириной 0,9-1,5 мкм, подвижная, образует споры. Грамположительная. Отдельные штаммы этого микроба могут образовывать капсулу.

Bacillus cereus

Культуральные свойства. Bacillus cereus-аэроб, но может развиваться и при недостатке кислорода воздуха. На МПА вырастают крупные, распластанные, серовато-беловатые колонии с изрезанными краями, некоторые штаммы образуют розовато-коричневый пигмент, на кровяном агаре-колонии с широкими, резко очерченными зонами гемолиза; на МПБ-образует нежную пленку, пристеночное кольцо, равномерное помутнение и хлопьевидный осадок на дне пробирки. Все штаммы Bacillus cereus интенсивно растут при рН от 9 до 9,5; при рН 4,5-5 прекращают своё развитие. Оптимальная температура развития 30-32 С, максимальная 37-48С, минимальная 10С.

Ферментативные свойства. Bacillus cereus свертывает и пептонизирует молоко, вызывает быстрое разжижение желатина, способен образовывать ацетилметилкарбинол, утилизировать цитратные соли, ферментирует мальтозу, сахарозу. Некоторые штаммы способны расщеплять лактозу, галактозу, дульцит, инулин, арабинозу, глицерин. Манит не расщепляет ни один штамм.

Устойчивость. Bacillus cereus является спорообразующим микробом, поэтому обладает значительной устойчивостью к нагреванию, высушиванию, высоким концентрациям поваренной соли и сахара. Так, Bacillus cereus часто обнаруживают в пастеризованном молоке (65-93С), в консервах. В мясо она попадает при убое скота и разделке туш. Особенно активно палочка цереус развивается в измельченных продуктах (котлеты, фарш, колбаса), а также в кремах. Микроб может развиваться при концентрации поваренной соли в субстрате до 10-15%, а сахара-до 30-60%. Кислая среда действует на него неблагоприятно. Наиболее чувствителен этот микроорганизм к уксусной кислоте.

Патогенность. Белые мыши гибнут при введении больших доз палочки цереус. В отличие от возбудителя сибирской язвы Bacillus anthracis палочка цереус непатогенна для морских свинок и кроликов. Она может вызывать мастит у коров. Некоторые разновидности этого микроорганизма выделяют фермент лекцитиназу (фактор вирулентности).

Диагностика. Учитывая количественный фактор в патогенезе пищевых отравлений, вызываемых Bacillus cereus, на первом этапе микробиологического исследования проводят микроскопию мазков (окраска мазков по Граму). Наличие в мазках грамположительных палочек толщиной 0,9 мкм позволяет поставить ориентировочный диагноз: «споровый аэроб группы Iа». По современной классификации в группу Iа входят Bacillus аnthracis и Bacillus cereus. При выяснении этиологии пищевых отравлений большое значение имеет дифференциация Bacillus cereus и Bacillus аnthracis, так как кишечная форма сибирской язвы, вызываемая Bacillus аnthracis, по клиническим признакам может быть принята за пищевое отравление. Второй этап микробиологического исследования проводят в том случае, если количество обнаруженных при микроскопии палочек достигает в 1 г продукта 10.

Затем по результатам микроскопии патологический материал высевают на кровяной агар в чашки Петри и инкубируют при 37С в течение 1 сут. Наличие широкой, резко очерченной зоны гемолиза позволяет поставить предварительный диагноз на присутствие Bacillus cereus. Для окончательной идентификации производят посев выросших колоний в среду Козера и углеводную среду с маннитом. Ставят пробу на лецитиназу, ацетилметилкарбинол и проводят дифференциацию Bacillus аnthracis и других представителей рода Bacillus Bacillus аnthracis отличается от Bacillus cereus рядом характерных признаков: рост в бульоне и желатине, способность образовывать капсулу в организме и на средах, содержащих кровь или кровяную сыворотку.

Кроме вышеописанных методов применяют экспресс-методы дифференциации Bacillus аnthracis от Bacillus cereus, Bacillus аnthracoides и др.:феномен «ожерелья», пробу с сибиреязвенным бактериофагом, реакцию преципитации-и проводят люминесцентную микроскопию. Можно использовать также цитопатогенный эффект фильтрата Bacillus cereus на клетки культур тканей (фильтрат Bacillus аnthracis такого эффекта не оказывает). От других сапрофитных споровых аэробов Bacillus cereus отличается по ряду свойств: способность образования лецитиназы, ацетилметилкарбинола, утилизация цитратных солей, ферментация маннита и рост в анаэробных условиях на среде с глюкозой. Особенно важное значение придают лецитиназе. Образование на кровяном агаре зон гемолиза не является постоянным признаком у Bacillus cereus, так как некоторые штаммы и разновидности Bacillus cereus (например Var. sotto) не вызывает гемолиза эритроцитов, в то время как многие другие виды споровых аэробов обладают этим свойством.

Bacillus mycoides

Bacillus mycoides является разновидностью Bacillus сеreus. Палочки (иногда образует цепочки) длиной 1,2-6 мкм, шириной 0,8 мкм, подвижны до начала спорообразования (признак характерен для всех гнилостных спорообразующих аэробов), образуют споры, капсул не образуют, по Граму красятся положительно (некоторые разновидности Bacillus mycoides грамотрицательны). Аэроб, на МПА вырастают корневидные колонии серо-белого цвета, напоминающие мицелий гриба Некоторые разновидности (например, Bacillus mycoides roseus) образуют красный или розовато-коричневый пигмент, при росте на МПБ все разновидности Bacillus mycoides образуют пленку и трудно разбивающийся осадок, бульон при этом остается прозрачным. Диапазон рН, при котором возможно размножение Bacillus mycoides широк. В интервале рН от 7 до 9,5 интенсивный рост дают все без исключения штаммы этого микроорганизма. Кислая среда приостанавливает развитие. Температурный оптимум для их развития 30-32°С. Могут развиваться в широком диапазоне температур (от 10 до 45°С). Ферментативные свойства Bacillus mycoides ярко выражены: разжижает желатин, вызывает коагуляцию и пептонизацию молока. Выделяет аммиак, иногда сероводород. Индола не образует. Вызывает гемолиз эритроцитов и гидролиз крахмала, ферментирует углеводы (глюкозу, сахарозу, галактозу, лактозу, дульцит, инулин, арабинозу), но не расщепляет маннита. Расщепляет глицерин.

Bacillus mesentericus

Грубая палочка с закругленными концами длиной 1,6-6 мкм, шириной 0,5-0,8 мкм,подвижна, образует споры, капсул не образует, грамположительна. Аэроб, на МПА вырастают сочные, с морщинистой поверхностью, слизистые колонии матового цвета (серо-белые) с волнистым краем. Отдельные штаммы Bacillus mesentericus образуют серо-бурый, бурый или коричневый пигмент; вызывает слабое помутнение МПБ и образование пленки; в бульоне с кровью гемолиз отсутствует. Оптимальная реакция рН 6,5-7,5, при рН 5,0 жизнедеятельность приостанавливается. Оптимальная температура роста 36-45°С. Разжижает желатин, свертывает и пептонизирует молоко. При разложении белков выделяет много сероводорода. Индол не образует. Вызывает гидролиз крахмала. Не ферментирует глюкозу и лактозу.

Bacillus megatherium

Грубая палочка размером 3,5- 7X1,5-2 мкм. Располагается одиночно, попарно или цепочками, подвижна Формирует споры, капсул не образует, грамположительна. Аэроб, на МПА вырастают колонии матового цвета (серо-белые). Гладкие, блестящие, с ровными краями; вызывает помутнение МПБ с появлением незначительного осадка. Микроб чувствителен к кислой реакции среды. Оптимальная температура развития 25-30°С. Быстро разжижает желатин, свертывает и пептонизирует молоко. Выделяет сероводород, аммиак, но не образует индола. Вызывает гемолиз эритроцитов и гидролизует крахмал. На средах с глюкозой и лактозой дает кислую реакцию.

Bacillus subtilis

Короткая палочка с закругленными концами, размером 3-5X0,6 мкм, иногда располагается цепочками, подвижна, образует споры, капсул не образует, грамположительна. Аэроб, при росте на МПА формируются сухие бугристые колонии матового цвета. В жидких средах на поверхности появляется морщинистая беловатая пленка, МПБ вначале мутнеет, а затем становится прозрачным. Вызывает посинение лакмусового молока. Микроб чувствителен к кислой реакции среды. Оптимальная температура развития 37°С, но может развиваться и при температурах несколько выше 0°С. Характеризуется высокой протеолитической активностью: разжижает желатин и свернутую кровяную сыворотку; свертывает и пептонизирует молоко; выделяет большое количество аммиака, иногда сероводород, но не образует индола. Вызывает гидролиз крахмала, разлагает глицерин; дает кислую реакцию на средах с глюкозой, лактозой, сахарозой.



Существенное значение для роста микроорганизмов имеет оптимальная величина РН среды. Большинство микроорганизмов растет при нейтральном рН – 7. Нитрифицирующие и клубеньковые бактерии – актиномицеты – предпочитают более высокие значения рН, т.е. слегка щелочные. Лишь немногие бактерии растут в кислой среде. Грибы предпочитают низкие значения рН. Под влиянием рН среды изменяется активность ферментов клетки и в связи с этим ее биохимическая и физиологическая активность, рост и размножение. При колебании рН может изменяться степень диссоциации веществ в среде, что в свою очередь отражается на обмене веществ в клетке.
К кислой среде вегетативные клетки бактерий менее устойчивы, чем споры. Особенно неблагоприятна кислая среда для гнилостных бактерий и бактерий, вызывающих пищевые отравления. Подавление роста гнилостных микроорганизмов при подкислении среды имеет практическое применение. Добавление уксусной кислоты используется при мариновании продуктов, что препятствует процессам гниения и позволяет сохранить продукты. Образующаяся при квашении молочная кислота также подавляет рост гнилостных бактерий.

В зависимости от отношения к рН среды микроорганизмы делятся на три группы:
нейтрофилы - предпочитают нейтральную реакцию среды. Растут в диапазоне значений рН от 4 до 9. К нейтрофилам относятся большинство бактерий, в то числе гнилостные бактерии;
ацидофилы (кислотолюбивые). Растут при рН 4 и ниже. К ацидофилам относятся молочнокислые, уксуснокислые бактерии, грибы и дрожжи.
алкалофилы (щелочелюбивые). К этой группе относятся микроорганизмы, которые растут и развиваются при рН 9 и выше. Примером алкалофилов является холерный вибрион.
Если рН не соответствует оптимальной величине, то микроорганизмы не могут нормально развиваться, так как активная кислотность оказывает влияние на активность ферментов клетки и проницаемость цитоплазматической мембраны.
Некоторые микроорганизмы, образуя продукты обмена и выделяя их в среду, способны изменять реакцию среды.
Для бактерий кислая среда более опасна, чем щелочная (особенно для гнилостных бактерий). Это используется для консервирования продуктов путем маринования или квашения. При мариновании к продуктам добавляют уксусную кислоту, при квашении создаются условия для развития молочнокислых бактерий, которые образуют молочную кислоту и тем самым способствуют подавлению роста гнилостных бактерий.

15. .Влияние на микробную клетку ядовитых веществ (неорганические и органические соединения). Понятие о бактерицидном и бактериостатическом действии. Пищевые консерванты.

Антибиотик - вещество микробного, животного или растительного происхождения, способное подавлять рост микроорганизмов или вызывать их гибель. Некоторые антибиотики оказывают сильное подавляющее действие на рост и размножение бактерий и при этом относительно мало повреждают или вовсе не повреждают клетки макроорганизма, и поэтому применяются в качестве лекарственных средств.

Жизнедеятельность микроорганизмов находится в зависимости от факторов окружающей среды, которые могут оказывать бактерицидное, т.е. уничтожающее, действие на клетки или бактериостатическое – подавляющее размножение микроорганизмов.

Наибольшей бактерицидной активностью отличается лизоцим М. Он действует губительно на патогенных стафилококков, маститного стрептококка, сальмонелл, кишечных палочек, возбудителя сибирской язвы и других, особенно грамположительных, микроорганизмов.

Токсины бактерий - биологически активные вещества, которые могут вызывать разнообразные патологические изменения в структуре и функциях клеток, тканей, органов и целого макроорганизма чувствительного животного или человека. Сведения о механизмах действия бактериальных токсинов ограничены: известно, что у части токсинов активность обусловлена их ферментативными свойствами.

Грамположительные бактерии обычно активно секретируют в токсины во время роста, что приводит к их накоплению в среде обитания. Токсины грамотрицательных бактерий (например, кишечного семейства) связаны с липополисахаридным компонентом клеточной стенки.

В начале XX столетия основными причинами развития болезней человека стали экологическая и генетическая модели. В соответствии с первой, болезни вызываются, главным образом, внешними повреждающими факторами, а второй - внутренними, врожденными. Поэтому меры профилактики были направлены на устранение этих факторов, в первую очередь, внешних, а меры лечения - на нейтрализацию действия этих факторов в организме.

Начиная с 50-х годов нашего столетия обозначились новые причины в возникновении заболеваний. Появились и стали доминировать хронические болезни, прежде всего: атеросклероз и его осложнения (инфаркт, инсульт), рак, ожирение, сахарный диабет, гипертоническая болезнь. Именно эти заболевания относят к группе неинфекционных болезней. В настоящее время они составляют более 80 % всех случаев смерти человека.

Структура причин заболеваемости и смертности изменилась благодаря социальному прогрессу и успехам медицины в области лечения инфекций, что увеличило продолжительность жизни и привело к развитию многих хронических болезней в среднем и пожилом возрасте.

В соответствии с этими представлениями о причинах болезней разрабатываются меры их профилактики и лечения. Так, например, в отношении профилактики атеросклероза такими мерами являются ограничение в пищевом рационе жиров, глюкозы и холестерина, а при лечении уже возникшей болезни воздействия направляются на усиление выведения холестерина из организма.

Вторая категория болезней - это врожденные, или генетические, болезни. В настоящее время уже известно более 2500 нарушений, локализованных на генетическом или хромосомном уровне, которые вызывают определенные синдромы или болезни, включая главные болезни.

Экологические и генетические болезни характеризуются той особенностью, что они поражают не каждого индивидуума, а лишь определённую их часть в каждой популяции.

При проведении определенных профилактических мер можно добиться существенного снижения доли лиц, поражаемых экологическими и генетическими болезнями. Поскольку причины генетических поломок связывают, прежде всего, с действием повреждающих экологических факторов (радиация, химические и др. мутагены), то понятие «болезни» в этом случае следует трактовать, как нарушение отношений организма и среды его обитания.

Третья категория болезней относиться к группе инволюционных или метаболических нарушений. Это болезни связаны с действием побочных продуктов метаболизма клеток стареющего организма. Одним из наиболее интенсивных источников такого рода повреждающих факторов является образование свободных радикалов, генерируемых в реакциях, идущих с использованием кислорода.

Клетка - это сложнейшая организация с полужестким скелетом из структурных белков, с множеством «каналов», по которым циркулируют токи жидкостей, содержащие простые и сложные молекулы. По ним осуществляются как вещественно-энергетические, так и информационные связи.

Оболочка клетки - не пассивная полунепроницаемая мембрана, а сложная структура с управляемыми из «центра» порами, избирательно пропускающая и даже активно захватывающая вещества извне.

Различают активный и пассивный транспорт веществ через мембрану. Первый осуществляется без затрат энергии (аминокислоты, сахар, нуклеотиды и пр.) и проходят с участием определенных белков-ферментов. Второй требует энергетических затрат клетки путем гидролиза АТФ на АДФ и фосфорную кислоту (катионы натрия, калия, кальция, магния).

Клеточная мембрана состоит из белково-липидных комплексов. Ее барьерная функция обеспечивается за счет гидрофобных компонентов - липидов и некоторых белков (фосфолипиды).

Мембраны являются высокоактивными в метаболическом отношении клеточными структурами. С их участием происходят такие жизненно важные процессы, как транспорт различных веществ внутрь и наружу клеток, рецепция гормонов и других биологически активных веществ, сигнальная трансдукция и пр.

Следует подчеркнуть, что разные типы мембран (плазматические, митохондриальные, эндоплазматические, ядерные и др.) имеют особенности своей структуры, которые определяют их функцию.

Деятельность клетки сводится к многочисленным химическим реакциям, которые протекает под действием своего белка-фермента.

Каждый фермент имеет свое построение и состоит из белковой и кофакторной части, которая состоит либо из металла, или витамина, или аминокислоты.

Бактериостатический - св-во хим., биол. или физ. факторов полностью или частично приостанавливать рост и размножение бактерий.

16. Отношение микроорганизмов к различным температурам. Применение температурного фактора для удлинения сроков хранения продуктов .

Температура – один из основных факторов, определяющих возможность и интенсивность размножения микроорганизмов.

Микроорганизмы могут расти и проявлять свою жизнедеятельность в определенном температурном диапазоне и в зависимости от отношения к температуре делятся на психрофилы, мезофилы и термофилы. Температурные диапазоны роста и развития микроорганизмов этих групп приведены в таблице

Таблица 9.1 Деление микроорганизмов на группы в зависимости

от отношения к температуре

Разделение микроорганизмов на 3 группы весьма условно, так как микроорганизмы могут приспосабливаться к несвойственной им температуре.

Температурные пределы роста определяются терморезистентностью ферментов и клеточных структур, содержащих белки.

Среди мезофилов встречаются формы с высоким температурным максимумом и низким минимумом. Такие микроорганизмы называют термотолерантными.

Действие высоких температур на микроорганизмы. Повышение температуры выше максимальной может привести к гибели клеток. Гибель микроорганизмов наступает не мгновенно, а во времени. При незначительном повышении температуры выше максимальной микроорганизмы могут испытывать «тепловой шок» и после недлительного пребывания в таком состоянии они могут реактивироваться.

Механизм губительного действия высоких температур связан с денатурацией клеточных белков. Молодые вегетативные клетки, богатые свободной водой, погибают при нагревании быстрее, чем старые, обезвоженные.

Термоустойчивость – способность микроорганизмов выдерживать длительное нагревание при температурах, превышающих температурный максимум их развития.

Гибель микроорганизмов наступает при разных значениях температур и зависит от вида микроорганизма. Так, при нагревании во влажной среде в течение 15 мин при температуре 50–60 °С погибает большинство грибов и дрожжей; при 60–70 °С – вегетативные клетки большинства бактерий, споры грибов и дрожжей уничтожаются при 65–80° С. Наибольшей термоустойчивостью обладают вегетативные клетки термофилов (90–100 °С) и споры бактерий (120 °С).

Высокая термоустойчивость термофилов связана с тем, что, во первых, белки и ферменты их клеток более устойчивы к температуре, во вторых, в них содержится меньше влаги. Кроме того, скорость синтеза различных клеточных структур у термофилов выше скорости их разрушения.

Термоустойчивость спор бактерий связана с малым содержанием в них свободной влаги, многослойнойоболочкой, в состав которой входит кальциевая сольдипиколиновой кислоты.

На губительном действии высоких температур основаны различные методы уничтожения микроорганизмов в пищевых продуктах. Это кипячение, варка, бланширование, обжарка, а также стерилизация и пастеризация. Пастеризация – процесс нагревания до 100˚С при котором происходит уничтожение вегетативных клеток микроорганизмов. Стерилизация – полное уничтожение вегетативных клеток и спор микроорганизмов. Процесс стерилизации ведут при температуре выше 100 °С.

Влияние низких температур на микроорганизмы. К низким температурам микроорганизмы более устойчивы, чем к высоким. Несмотря на то, что размножение и биохимическая активность микроорганизмов при температуре ниже минимальной прекращаются, гибели клеток не происходит, т.к. микроорганизмы переходят в состояние анабиоза (скрытой жизни) и остаются жизнеспособными длительное время. При повышении температуры клетки начинают интенсивно размножаться.

Причинами гибели микроорганизмов при действии низких температур являются:

Нарушение обмена веществ;

Повышение осмотического давления среды вследствие вымораживания воды;

В клетках могут образоваться кристаллики льда, разрушающие клеточную стенку.

Низкая температура используется при хранении продуктов в охлажденном состоянии (при температуре от 10 до –2 °С) или в замороженном виде (от –12 до –30 °С).

Существенное значение для роста микроорганизмов имеет оптимальная величина РН среды. Большинство микроорганизмов растет при нейтральном рН – 7. Нитрифицирующие и клубеньковые бактерии – актиномицеты – предпочитают более высокие значения рН, т.е. слегка щелочные. Лишь немногие бактерии растут в кислой среде. Грибы предпочитают низкие значения рН. Под влиянием рН среды изменяется активность ферментов клетки и в связи с этим ее биохимическая и физиологическая активность, рост и размножение. При колебании рН может изменяться степень диссоциации веществ в среде, что в свою очередь отражается на обмене веществ в клетке.
К кислой среде вегетативные клетки бактерий менее устойчивы, чем споры. Особенно неблагоприятна кислая среда для гнилостных бактерий и бактерий, вызывающих пищевые отравления. Подавление роста гнилостных микроорганизмов при подкислении среды имеет практическое применение. Добавление уксусной кислоты используется при мариновании продуктов, что препятствует процессам гниения и позволяет сохранить продукты. Образующаяся при квашении молочная кислота также подавляет рост гнилостных бактерий.

В зависимости от отношения к рН среды микроорганизмы делятся на три группы:
нейтрофилы - предпочитают нейтральную реакцию среды. Растут в диапазоне значений рН от 4 до 9. К нейтрофилам относятся большинство бактерий, в то числе гнилостные бактерии;
ацидофилы (кислотолюбивые). Растут при рН 4 и ниже. К ацидофилам относятся молочнокислые, уксуснокислые бактерии, грибы и дрожжи.
алкалофилы (щелочелюбивые). К этой группе относятся микроорганизмы, которые растут и развиваются при рН 9 и выше. Примером алкалофилов является холерный вибрион.
Если рН не соответствует оптимальной величине, то микроорганизмы не могут нормально развиваться, так как активная кислотность оказывает влияние на активность ферментов клетки и проницаемость цитоплазматической мембраны.
Некоторые микроорганизмы, образуя продукты обмена и выделяя их в среду, способны изменять реакцию среды.
Для бактерий кислая среда более опасна, чем щелочная (особенно для гнилостных бактерий). Это используется для консервирования продуктов путем маринования или квашения. При мариновании к продуктам добавляют уксусную кислоту, при квашении создаются условия для развития молочнокислых бактерий, которые образуют молочную кислоту и тем самым способствуют подавлению роста гнилостных бактерий.

15. .Влияние на микробную клетку ядовитых веществ (неорганические и органические соединения). Понятие о бактерицидном и бактериостатическом действии. Пищевые консерванты.

Антибиотик - вещество микробного, животного или растительного происхождения, способное подавлять рост микроорганизмов или вызывать их гибель. Некоторые антибиотики оказывают сильное подавляющее действие на рост и размножение бактерий и при этом относительно мало повреждают или вовсе не повреждают клетки макроорганизма, и поэтому применяются в качестве лекарственных средств.

Жизнедеятельность микроорганизмов находится в зависимости от факторов окружающей среды, которые могут оказывать бактерицидное, т.е. уничтожающее, действие на клетки или бактериостатическое – подавляющее размножение микроорганизмов.

Наибольшей бактерицидной активностью отличается лизоцим М. Он действует губительно на патогенных стафилококков, маститного стрептококка, сальмонелл, кишечных палочек, возбудителя сибирской язвы и других, особенно грамположительных, микроорганизмов.

Токсины бактерий - биологически активные вещества, которые могут вызывать разнообразные патологические изменения в структуре и функциях клеток, тканей, органов и целого макроорганизма чувствительного животного или человека. Сведения о механизмах действия бактериальных токсинов ограничены: известно, что у части токсинов активность обусловлена их ферментативными свойствами.

Грамположительные бактерии обычно активно секретируют в токсины во время роста, что приводит к их накоплению в среде обитания. Токсины грамотрицательных бактерий (например, кишечного семейства) связаны с липополисахаридным компонентом клеточной стенки.

В начале XX столетия основными причинами развития болезней человека стали экологическая и генетическая модели. В соответствии с первой, болезни вызываются, главным образом, внешними повреждающими факторами, а второй - внутренними, врожденными. Поэтому меры профилактики были направлены на устранение этих факторов, в первую очередь, внешних, а меры лечения - на нейтрализацию действия этих факторов в организме.

Начиная с 50-х годов нашего столетия обозначились новые причины в возникновении заболеваний. Появились и стали доминировать хронические болезни, прежде всего: атеросклероз и его осложнения (инфаркт, инсульт), рак, ожирение, сахарный диабет, гипертоническая болезнь. Именно эти заболевания относят к группе неинфекционных болезней. В настоящее время они составляют более 80 % всех случаев смерти человека.

Структура причин заболеваемости и смертности изменилась благодаря социальному прогрессу и успехам медицины в области лечения инфекций, что увеличило продолжительность жизни и привело к развитию многих хронических болезней в среднем и пожилом возрасте.

В соответствии с этими представлениями о причинах болезней разрабатываются меры их профилактики и лечения. Так, например, в отношении профилактики атеросклероза такими мерами являются ограничение в пищевом рационе жиров, глюкозы и холестерина, а при лечении уже возникшей болезни воздействия направляются на усиление выведения холестерина из организма.

Вторая категория болезней - это врожденные, или генетические, болезни. В настоящее время уже известно более 2500 нарушений, локализованных на генетическом или хромосомном уровне, которые вызывают определенные синдромы или болезни, включая главные болезни.

Экологические и генетические болезни характеризуются той особенностью, что они поражают не каждого индивидуума, а лишь определённую их часть в каждой популяции.

При проведении определенных профилактических мер можно добиться существенного снижения доли лиц, поражаемых экологическими и генетическими болезнями. Поскольку причины генетических поломок связывают, прежде всего, с действием повреждающих экологических факторов (радиация, химические и др. мутагены), то понятие «болезни» в этом случае следует трактовать, как нарушение отношений организма и среды его обитания.

Третья категория болезней относиться к группе инволюционных или метаболических нарушений. Это болезни связаны с действием побочных продуктов метаболизма клеток стареющего организма. Одним из наиболее интенсивных источников такого рода повреждающих факторов является образование свободных радикалов, генерируемых в реакциях, идущих с использованием кислорода.

Клетка - это сложнейшая организация с полужестким скелетом из структурных белков, с множеством «каналов», по которым циркулируют токи жидкостей, содержащие простые и сложные молекулы. По ним осуществляются как вещественно-энергетические, так и информационные связи.

Оболочка клетки - не пассивная полунепроницаемая мембрана, а сложная структура с управляемыми из «центра» порами, избирательно пропускающая и даже активно захватывающая вещества извне.

Различают активный и пассивный транспорт веществ через мембрану. Первый осуществляется без затрат энергии (аминокислоты, сахар, нуклеотиды и пр.) и проходят с участием определенных белков-ферментов. Второй требует энергетических затрат клетки путем гидролиза АТФ на АДФ и фосфорную кислоту (катионы натрия, калия, кальция, магния).

Клеточная мембрана состоит из белково-липидных комплексов. Ее барьерная функция обеспечивается за счет гидрофобных компонентов - липидов и некоторых белков (фосфолипиды).

Мембраны являются высокоактивными в метаболическом отношении клеточными структурами. С их участием происходят такие жизненно важные процессы, как транспорт различных веществ внутрь и наружу клеток, рецепция гормонов и других биологически активных веществ, сигнальная трансдукция и пр.

Следует подчеркнуть, что разные типы мембран (плазматические, митохондриальные, эндоплазматические, ядерные и др.) имеют особенности своей структуры, которые определяют их функцию.

Деятельность клетки сводится к многочисленным химическим реакциям, которые протекает под действием своего белка-фермента.

Каждый фермент имеет свое построение и состоит из белковой и кофакторной части, которая состоит либо из металла, или витамина, или аминокислоты.

Бактериостатический - св-во хим., биол. или физ. факторов полностью или частично приостанавливать рост и размножение бактерий.

16. Отношение микроорганизмов к различным температурам. Применение температурного фактора для удлинения сроков хранения продуктов .

Температура – один из основных факторов, определяющих возможность и интенсивность размножения микроорганизмов.

Микроорганизмы могут расти и проявлять свою жизнедеятельность в определенном температурном диапазоне и в зависимости от отношения к температуре делятся на психрофилы, мезофилы и термофилы. Температурные диапазоны роста и развития микроорганизмов этих групп приведены в таблице

Таблица 9.1 Деление микроорганизмов на группы в зависимости

от отношения к температуре

Разделение микроорганизмов на 3 группы весьма условно, так как микроорганизмы могут приспосабливаться к несвойственной им температуре.

Температурные пределы роста определяются терморезистентностью ферментов и клеточных структур, содержащих белки.

Среди мезофилов встречаются формы с высоким температурным максимумом и низким минимумом. Такие микроорганизмы называют термотолерантными.

Действие высоких температур на микроорганизмы. Повышение температуры выше максимальной может привести к гибели клеток. Гибель микроорганизмов наступает не мгновенно, а во времени. При незначительном повышении температуры выше максимальной микроорганизмы могут испытывать «тепловой шок» и после недлительного пребывания в таком состоянии они могут реактивироваться.

Механизм губительного действия высоких температур связан с денатурацией клеточных белков. Молодые вегетативные клетки, богатые свободной водой, погибают при нагревании быстрее, чем старые, обезвоженные.

Термоустойчивость – способность микроорганизмов выдерживать длительное нагревание при температурах, превышающих температурный максимум их развития.

Гибель микроорганизмов наступает при разных значениях температур и зависит от вида микроорганизма. Так, при нагревании во влажной среде в течение 15 мин при температуре 50–60 °С погибает большинство грибов и дрожжей; при 60–70 °С – вегетативные клетки большинства бактерий, споры грибов и дрожжей уничтожаются при 65–80° С. Наибольшей термоустойчивостью обладают вегетативные клетки термофилов (90–100 °С) и споры бактерий (120 °С).

Высокая термоустойчивость термофилов связана с тем, что, во первых, белки и ферменты их клеток более устойчивы к температуре, во вторых, в них содержится меньше влаги. Кроме того, скорость синтеза различных клеточных структур у термофилов выше скорости их разрушения.

Термоустойчивость спор бактерий связана с малым содержанием в них свободной влаги, многослойнойоболочкой, в состав которой входит кальциевая сольдипиколиновой кислоты.

На губительном действии высоких температур основаны различные методы уничтожения микроорганизмов в пищевых продуктах. Это кипячение, варка, бланширование, обжарка, а также стерилизация и пастеризация. Пастеризация – процесс нагревания до 100˚С при котором происходит уничтожение вегетативных клеток микроорганизмов. Стерилизация – полное уничтожение вегетативных клеток и спор микроорганизмов. Процесс стерилизации ведут при температуре выше 100 °С.

Влияние низких температур на микроорганизмы. К низким температурам микроорганизмы более устойчивы, чем к высоким. Несмотря на то, что размножение и биохимическая активность микроорганизмов при температуре ниже минимальной прекращаются, гибели клеток не происходит, т.к. микроорганизмы переходят в состояние анабиоза (скрытой жизни) и остаются жизнеспособными длительное время. При повышении температуры клетки начинают интенсивно размножаться.

Причинами гибели микроорганизмов при действии низких температур являются:

Нарушение обмена веществ;

Повышение осмотического давления среды вследствие вымораживания воды;

В клетках могут образоваться кристаллики льда, разрушающие клеточную стенку.

Низкая температура используется при хранении продуктов в охлажденном состоянии (при температуре от 10 до –2 °С) или в замороженном виде (от –12 до –30 °С).

Собственно, идея завести дневник началась с этой статьи о среде обитания бактерий и вирусов в человеческом организме. Именно после ее прочтения я поняла, что мне необходим органайзер для информации и, мне кажется электронный дневник - это то что нужно. Итак статью располагаются ниже

Среда обитания вирусов и бактерий и кислотно- щелочной баланс.

двигательная активность и правильное дыхание;

выбор определенных продуктов питания;

применение различных биологически активных компонентов.


Известен хорошо тот факт, что при длительной и интенсивной физической нагрузке из мышц в кровь поступает в 10 раз больше молочной кислоты, чем в норме.
Здоровый организм вполне справляется с выведением избытка кислоты из организма, за действуя в частности, дыхательный механизм.
А вот если нагрузки чрезмерно интенсивны, что сейчас часто можно увидеть не только в школах олимпийского резерва, но и просто в фит нес-центрах!

Большинство продуктов обладают либо кислотными (катаболическими), либо щелочными (анаболическими) свойствами.

Некоторые из них , такие как сливки, шоколад, сахар, кофе (сладкий), яйцо всмятку обладают очень сильным щелочным анаболическим действием.

Жареные блюда , включая яичницу, консервированные мясо и рыба, майонез, кофе без сахара - сильным кислотным катаболическим действием.


Существует несколько простых с пособов для определения сдвига рН в ту или другую сторону:
можно применить специальные тест-полоски, продающиеся в аптеках;

бледно-розовая белесая конъюнктива глаз говорит о том, что основное состояние сдвинуто в сторону кислотности, а темно-красная - о преобладании щелочности. Это свойство конъюнктивы подмечено русским физиком и специалистом в области народной медицины - В.В. Караваевым
.
Он же предлагал еще один тест.

Если легче дышать через левую ноздрю, то в организме преобладает кислая реакция, «идет перегрев головного мозга», а если - через правую - реакция щелочная, «переохлаждение головного мозга».

Как известно, в щелочной среде условия благоприятны для развития грибков . Грибки ближе к растительным клеткам, поэтому у них рН щелочной, а свойства - анаболические, т.е. способствующие быстрому росту , например, опухоли.

Итак, щелочная среда наиболее благоприятна для развития плесневых грибков, анаэробных бактерий, простейших и вирусов ,
а кислая - для гельминтов, дрожжевых грибков и аэробных бактерий.


Аспергиллус Нигер, Фумигатус и Микозис Фунгоидес,стафилококки, стрептококки,кандида, криптококкус, трихоспориум,рак,опухоль

Статью я взяла с блога st-valentines.blogspot.com, (ее автор некий Виктор Анасис), чтобы подробнее разобраться в информации.

После прочтения статьи вывод напрашивается сам собой: если кислотно-щелочной баланс в норме, то организму ни по чем разные вредители - это доказал Луи Мастер на собственном опыте. Остается только понять, принять и претворить в реальность механизмы поддержания хрупкого равновесия ph.

Во второй части статьи мы поговорим о различных способах борьбы с патогенными микроорганизмами.

Какие существуют способы очищения от патогенных микроорганизмов в домашних условиях?

Для избавления от патогенных микроорганизмов рекомендуется голодать с отваром полыни. Применять полынь при голодании следует не дольше 2-х недель.

Очищение организма от патогенных микроорганизмов: Уринотерапия.

Урина - естественный закислитель. Но, помимо, закисления организма, антибактериальные свойства ее объясняются гомеопатическим принципом: подобное лечится подобным. Если быть точнее, то один из разделов гомеопатии носит название - лечение нозодами. Суть этого лечения заключается в применении патологических выделений против самого очага болезни, против гноеродных бактерий, их же породивших.

Урину предлагается пить залпом или в несколько глотков подряд (почему-то, глотков должно быть нечетное количество).

Как я уже писала, у меня лично этот уринотерапия вызывает внутренний протест. Полагаю, не у меня одной. Но хочу оставаться объективной - есть свидетельства в пользу этого метода, которые нельзя сбрасывать со счетов.

Если Вы сомневаетесь, стоит ли применять уринотерапию - прислушайтесь к своему внутреннему голосу. Интуиция никогда не подводит - надо лишь уметь ее слушать. Если вам чего-то сильно не хочется - не делайте этого. А если чувствуете, что данный метод принесет Вам пользу - попробуйте.

Очищение организма от патогенных микроорганизмов: Кремний.

Очищение организма от патогенных микроорганизмов: Стевия.

Очищение организма от патогенных микроорганизмов: Ароматерапевтическое лечение.

Эфирные масла против грибка кандида.

Масла чайного дерева, ромашки, корицы, чеснока, имбиря, лаванды, мирры, пачули, розмарина, мелалеуки, тимьяна и тысячелистника очень эффективны против грибка кандида.

Способы применения:

  • Добавить в ванну с теплой водой (вода не должна быть слишком горячей - иначе эфирные масла быстро испарятся) по 10 капель 3-4 видов эфирных масел. Принимать сидячую ванну 20-30 минут ежедневно.
  • Добавить в масло-основу (для данной цели хорошо подойдет льняное масло, но можно использовать другое хорошее растительное масло холодного отжима) по 2 капли 3-4 видов эфирных масел. Нанести на область вагины. Смочить в масле ватный тампон и вставить внутрь.
  • При молочнице рта - добавить по 1-2 капли 3-4 видов эфирных масел в стакан воды и полоскать рот несколько раз в день.

Противопоказания: Избегайте в течение первых месяцев беременности масел мирры и шалфея, а масла тимьяна – до ее окончания.

Эфирные масла против микробов.

Эфирные масла имеют сильные противомикробные и антибактериальные свойства, убивают многие вирусы. Они оказывают действие на устойчивые формы микроорганизмов и стафилококки, которые не чувствительны к антибиотикам (эфирные масла эвкалипта, лаванды, сосны, пихты, мяты и другие).

Ароматерапия обладает несомненными преимуществами перед лекарственными средствами, потому что:

  • Биологически активные вещества, содержащиеся в растениях, представляют собой продукты обмена живого организма.
  • Человек может усвоить их легче, чем чуждые ему синтетические медикаменты.
  • Растительные лекарственные средства действуют мягче и эффективнее, чем синтетические. Ведь они взяты из растительных клеток, у которых много общего с процессами, происходящими в клетках человеческого организма.
  • Эфирные масла и растительные антибиотики - фитонциды действуют против микробов, но не против человека.

Профессор Гриффон, изучал антисептическое действие смеси ароматических масел. Он получил следующие результаты: за полчаса ароматические эфирные масла уничтожили в воздухе помещения всю плесень и все стафилококки, а из 210 микробных колоний осталось только 4.

Большинство эфирных масел обладает противомикробным действием, большой бактерицидной активностью, активно подавляют рост гемолитических стафилококков, стрептококков, представителей тифо-дизентерийной группы и патогенных грибов. Антисептическая способность эфирных масел не слабеет, не снижается со временем, и организм не привыкает к ароматическим лечебным средствам. Микробы при длительном контакте с эфирными маслами практически не вырабатывают к ним устойчивости.

Эфирные масла создают для микробов такую среду обитания, в которой они не могут нормально развиваться и гибнут. Эфирные масла обладают свойствами гормонов, оказывают регулирующее действие на эндокринные железы. Они не заменяют собой неполноценные железы, а просто помогают им лучше работать. Эфирные масла легко проникают через кожу, быстро попадают в кровь и разносятся ею по всему организму.

Эфирные масла сосны, пихты и ели преодолевают кожный барьер за 20 мин, эвкалиптовое - за 20-40 мин, лимонное и анисовое - за 40-60 мин, масло мяты, лаванды и герани - за 60 мин. Затем масла выводятся через легкие и почки. При этом они оказывают на эти органы дезинфицирующее, спазмолитическое и стимулирующее воздействие.

Эфирные масла против плесени.

Против плесени и грибков всех видов отлично помогают эфирные масла лаванды и герани. А масло монарды уничтожает даже черную плесень.

Сразу после очищения от патогенных микроорганизмаов (микробов, болезнетворных бактерий грибков, плесени и т.д.) полезно провести полное очищение организма .

<<< К первой части статьи...

В статье использованы материалы сайтов fit-club.info, doktor.h14.ru, club.trios.e-gloryon.com и jerusalem.sitecity.ru .