Как по другому называется стереоскопическое зрение человека. Как мы видим в объеме? Косоглазие — причина потери стереоскопического зрения

Стереоскопическое зрение служит самым надежным и чувствительным показателем способности к анализу пространственных соотношений . По мнению Е.М. Белостоцкого (1959), способность зрительного анализатора к правильной оценке третьего пространственного измерения, т.е. глубинного зрения, является одним из компонентов сложного процесса бинокулярного восприятия пространства .

Благодаря способности к слиянию изображений, падающих на идентичные или слегка диспаратные участки сетчаток обоих глаз (в пределах зоны Панума), человек получает возможность свободно ориентироваться в окружающем пространстве и оценивать его в трех измерениях.

Вследствие того, что оба глаза расположены во фронтальной плоскости и на некотором расстоянии друг от друга, на сетчатки обоих глаз ложатся не вполне одинаковые, несколько смещенные изображения объекта фиксации.

Указанное смещение, или так называемая поперечная диспарация, является основным условием для стереоскопического (глубинного) восприятие объектов внешнего мира или первичным фактором восприятия глубины. При этом между стереоскопическим и глубинным зрением имеются различия. Стереоскопическое зрение может быть воспроизведено только в искусственных условиях на стереоскопических приборах. Оно осуществляется лишь при двух открытых глазах, тогда как глубинное зрение, т.е. способность к оценке третьего пространственного измерения в естественных условиях, может иметь место как при бинокулярном, так и при монокулярном зрении .

Наименьшая воспринимаемая разница в относительной удаленности двух объектов друг от друга называется остротой, или порогом глубинного зрения. Определение остроты или порога глубинного зрения дает возможность судить о наличии или отсутствии у данного испытуемого способности к восприятию глубины и дать ей количественную оценку (в углах диспарации или в углах бинокулярного параллакса).

Стереовосприятию способствуют и вторичные факторы оценки глубины, которые действуют и при монолатеральном зрении: распределение светотеней, относительные размеры предметов, линейная перспектива и др. факторы, которые помогают в оценке третьего пространственного измерения. Имеются данные о том, что стереоскопический эффект сохраняется на дистанции 0,1-100 м . Для нормального глубинного зрения необходимы: высокая острота зрения каждого глаза, правильное строение обоих глаз, отсутствие грубых нарушений в функции глазодвигательного аппарата.

В клинической практике используются специальные методы исследования стереоскопического зрения. Одни из методов основаны на использовании реальной глубинной разности с различным расположением тест-объектов по глубине: например, глубинно-глазомерный аппарат Литинского (1940), трехпалочковые устройства различных конструкций . Другие методы основаны на создании искусственной поперечной (горизонтальной) диспарации, которую обеспечивают смещением левого и правого изображения тест-объекта при предъявлении парных картинок (например, в линзовом стереоскопе), или демонстрацией на экране дисплея диспаратных изображений, которые рассматривают через цветовые, поляроидные или жидкокристаллические очки, позволяющие разделять поля зрения правого и левого глаза.

Frubise и Jeansch установили, что с увеличением расстояния, с которого ведется нaблюдение, поперечная диспарция определяется лучше. Они выявили, что у одного и того же исследуемого при наблюдении с расстояния 26 м порог глубины составляет 3,2", а при наблюдении с расстояния 6 м — 5,5" (цит. по: Заксенвегер Р., 1963) .

Adams W.E. с соавт. проводил исследование стереозрения с помощью теста FD2 у детей в возрасте от 3 до 6 лет и установил, что при расположении тест-объекта на расстоянии 3 м порог стереозрения составил 92", а на расстоянии 6 м — 29,6". Таким образом, они утверждают, что острота стереозрения вдаль намного лучше, чем вблизи .

Garnham L. и Sloper J.J. исследовали остроту стереозрения с использованием четырех тестов — TNO, Titmus, Frisby (для близи), Frisby-Davis (для дали) — у 60 здоровых субъектов в возрасте 17-83 лет .

В TNO-тесте используются случайные точки, разделение полей зрения двух глаз осуществляется с помощью красно-зеленых очков, в Titmus-тесте — черные круги и поляроидные очки, в Frisby-тесте — реальные предметы. Исследование стереоскопического и глубинного зрения с помощью данных тестов проводится вблизи. Для дали используют Frisby-Davis-тест с реальными предметами, угловые размеры которых соответствуют угловым величинам предметов для близи.

На рисунке представлены величины остроты стереозрения при использовании различных тестов по Garnham L. и Sloper J.J. . На рисунке видно, что имеются существенные отличия в остроте стереозрения у лиц разного возраста, а также при применении разных тестов. Так, при обследовании лиц 17-29 лет острота стереозрения по гистограмме А составляла 15-240", по гистограмме В — 40-60" и по гистограмме С — 20-55". Для дали острота стереозрения у них составила 4-20", т.е. наиболее высокая острота стереозрения выявляется при использовании реальных предметов, и при зрении вдаль она выше, чем при зрении вблизи. Аналогичная тенденция отмечена и в других возрастных группах.

Колосова С.А. определяла остроту глубинного зрения у лиц, отобранных в отряд космонавтов, и установила, что средние пороги глубинного зрения при освещенности фона 700 лк на расстоянии 30 см равны 10,8", на расстоянии 5 м — 4,4", на расстоянии 10 м — 2,1", а у некоторых испытуемых порог различения глубины был ниже 1". По мере накопления профессионального опыта острота глубинного зрения увеличивается, а при повышении интенсивности фонового освещения до максимальных величин — снижается .

Таким образом, острота стереозрения в значительной степени зависит от используемых тестов и расстояния до них, интенсивности фонового освещения, возраста пациентов, степени их тренированности, состояния их зрительных функций, способа обработки полученных данных и других факторов .

Мнения исследователей о возрастной норме порогов стереозрения у детей разделились: одни считают, что дети достигают уровня «взрослой» нормы к 7 годам, а другие отмечают улучшение показателей к 11-12 годам .

Высокую точность измерения стереоскопического зрения до 1" обеспечивает компьютерная программа «Стереопсис» . В качестве тест-объектов в ней используются стереопары, состоящие из расположенных одна над другой вертикальных синусоидальных решеток с одинаковой пространственной частотой (ПЧ) и различной диспаратностью, демонстрируемые на экране монитора.

При этом измерение порогов стереоскопического зрения можно осуществлять в широком диапазоне пространственной частоты от 0,35 до 32 цикл/град. При измерении порога стереозрения разделение полей зрения осуществляется с помощью очков с цветными (красно-зелеными) фильтрами. Для каждой из исследуемых частот порог стереозрения определяют как минимальную разницу диспаратностей верхней и нижней половины стереопары, при которой пациент еще различает их взаимное расположение по глубине.

Васильева Н.Н., Рожкова Г.И., Белозеров А.Е. исследовали остроту стереозрения по программе «Стереопсис» у 178 школьников в возрасте от 7 до 17 лет с расстояния 2,27 м. Во всех возрастных группах наименьшие пороги были зарегистрированы на частотах 1,0-2,0 цикл/град. В возрастной группе 7-10 лет оказалось 12% детей с порогами от 4 до 8"; в возрастной группе 11-14 лет — 42% с порогами 1-8"; в возрастной группе 15-17 лет — 49% с порогами 3-8" .

По мнению Рожковой Г.И. (1992) в восприятие и анализ стимулов могут вносить вклад, как минимум, две подсистемы бинокулярного зрения — чисто бинокулярная и постмонокулярная. При использовании случайно-точечного изображения работает только бинокулярная подсистема зрения, при использовании пространственно-частотной стереовизометрии — бинокулярная и постмонокулярная подсистемы .

В нашей работе для исследования стереоскопического зрения использовалась компьютерная программа «Стереопсис» . Исследование остроты стереозрения на расстояниях 5; 2,5; 1; 0,5; 0,33 м от объекта проводили при низких пространственных частотах наблюдаемой решетки (0,7-1,0 цикл/град). Исходная величина диспарации для 2,25 м составляла 1,8", при применении геометрических расчетов становится ясным, что для расстояния 5 м заданная диспаратность будет соответствовать 0,8", при приближении на расстояние 1 м — она составит 4", на расстоянии 0,5 м — 8", а на 0,33 м — 12,2". Если пациент видит на разных дистанциях минимальную заданную диспаратность, то по мере приближения к экрану показатели остроты стереозрения будут снижаться.

При сравнении полученных нами данных для расстояния 2,5 м (при эмметропии — 2,1±0,1", при гиперметропии — 1,6±0,2", при миопии — 5,3±0,3") мы не нашли большого разногласия с данными, полученными Васильевой Н.Н. с соавт. , которые использовали программу «Стереопсис»: чуть менее чем в половине случаев пороги стереозрения для расстояния 2,27 м у детей 11-14 лет составляли 1-8". При этом необходимо учитывать то обстоятельство, что они обследовали детей с очками, которые у них были, а не с полной коррекцией, устраняющей аметропию, а некоторые дети, как отмечают сами авторы, вовсе не пользовались коррекцией, стесняясь носить очки. В нашем случае мы отбирали детей только со слабой и средней степенью аметропии, без астигматизма, и при исследовании стереозрения полностью корригировали аметропию. Поэтому определенные различия в результатах могут наблюдаться. Сравнивать полученные пороги стереозрения с результатами других методов, основанных на использовании принципиально отличающихся от применяемых нами тестов, было бы некорректно. Оценка влияния расстояния на остроту стереоскопического зрения, несомненно, зависит от чувствительности используемой методики.

Заключение

Анализ литературных данных подтверждает известный факт зависимости бинокулярного, стереоскопического и глубинного зрения от применяемых методов, условий исследования, характера и степени гаплоскопического эффекта использованных тест-объектов.

Полученные нами данные, опубликованные в журнале «Офтальмохирургия» (2012, № 1, с. 13-19) в статье «Состояние стереоскопического зрения у детей с различными видами рефракции», мы не представляем критериями порогов стереозрения у детей; их следует расценивать как пороги стереоскопического зрения, определенные с помощью компьютерной программы «Стереопсис», адаптированной для различных дистанций исследования, при одинаковой угловой величине объектов, соответствующих пространственной частоте 0,7-1,0 цикл/град, у детей 10-15 лет с эмметропией и корригированными аметропиями слабой и средней степени.

Мы выражаем глубокую благодарность профессору А.А. Шпаку, проявившему интерес к нашей работе, что лишний раз указывает на актуальность данной проблемы и необходимость дальнейшего изучения и разработки методов исследования такой сложной функции, как стереоскопическое зрение.

Глаз формируется двумерное изображение, но невзирая на это, человек воспринимает глубину пространства, то есть имеет трехмерное, стереоскопическое зрение. Люди оценивают глубину благодаря разным механизмам. При наличии данных о величине предмета расценить расстояние к нему или понять, какой из объектов находится более близко, можно путем сравнения угловой величины объекта. Когда один предмет находится впереди другого и его частично заслоняет, то человеком передний объект воспринимается на более близком расстоянии. Если взять, например, проекцию параллельных линий (железнодорожных рельсов), которые уходят вдаль, то в проекции эти линии будут сближаться. Это является примером перспективы - весьма эффективного показателя глубины пространства.

Механизмы стереоскопического зрения

Выпуклый участок стены выглядит в верхней своей части более светлым, когда источник света расположен выше, а вот углубление в ее поверхности выглядит в верхней части более темным.

Удаленность предмета можно определить по такому важному признаку, как параллакс движения. Это кажущееся относительное смещение более далеких и близких предметов при движении головой в разных направлениях (вверх и вниз или вправо и влево). Все имели возможность наблюдать «железнодорожный эффект»: если смотреть из окна движущегося поезда, кажется, что скорость предметов, которые расположены более близко, большая, чем тех, которые находятся на большом расстоянии.

Стереопсис

Критерием удаленности предметов является величина глаза (напряжение цилиарного тела и цинновых связок, которые управляют ). Об удаленности объекта наблюдения также можно судить по усилению дивергенции или конвергенции. Все вышеперечисленные показатели удаленности, за исключением предпоследнего, монокулярные. Наиболее важным механизмом восприятия глубины пространства является стереопсис. Он зависит от возможности совместного использования двух глаз. Дело в том, что, когда человек рассматривает любую трехмерную сцену, каждый его глаз формирует несколько неодинаковые изображения на сетчатках. В процессе стереопсиса в коре головного мозга происходит сравнение изображения одной и той же сцены на обеих сетчатках и оценка относительной глубины. Процесс слияния двух монокулярных изображений, которые видны раздельно левым и правым глазом при рассматривании объекта одновременно обоими глазами, в одно объемное изображение, называется фузией.

Диспарантность

Диспарантностью называют отклонение от положения корреспондирующих точек (точки на сетчатках правого и левого глаза, в которых позиционируется одно и то же изображение). Если это отклонение не превышает в горизонтальном направлении 2°, а по вертикали - не больше нескольких угловых минут, то человек будет визуально воспринимать одиночную точку в пространстве как расположенную ближе, чем сама точка фиксации. В том случае, когда расстояния между проекциями точки меньше, а не больше, чем между корреспондирующими точками, будет казаться, что она расположена дальше точки фиксации. Третий вариант: если горизонтальное отклонение будет больше 2°, вертикальное превышает несколько угловых минут, то мы сможем увидеть две отдельные точки. Они могут казаться расположенными ближе или дальше точки фиксации. Этот эксперимент лежит в основе созданий целой серии стереоскопических приборов - от стереоскопа Уитстона до стереотелевидения и стереодальномеров.

Проверка стереопсиса

Не все люди могут воспринимать глубину с помощью стереоскопа. Поверить свой стереопсис можно при помощи такого рисунка. При наличии стереоскопа можно сделать копии стереопар, которые на нем изображены, и вставить их в стереоскоп. Также можно между двумя изображениями одной стереопары расположить перпендикулярно тонкий лист картона и, установив глаза параллельно, попытаться смотреть на свое изображение каждым глазом.

В США в 1960 году Бела Юлеш предложил использовать оригинальный способ демонстрации стереоэффекта, который исключает монокулярное наблюдение объекта. Книги, основанные на этом принципе, можно использовать также для тренировки стереопсиса. Один из рисунков представлен на рис.3. Если смотреть вдаль, как бы сквозь рисунок, можно увидеть стереоскопическую картину. Эти рисунки называются автостереограммами.

На основании этого метода создано устройство, которое позволяет исследовать порог стереоскопического зрения. Существует его модификация, которая позволяет повысить точность определения порога стереоскопического зрения. Каждому глазу наблюдателя представляются тест-объекты на рандомизированном фоне. Каждый из них является совокупностью точек на плоскости, которые расположены по индивидуальному вероятностному закону. Каждый тест-объект имеет идентичные области точек, представляющие собой фигуру произвольной формы. В том случае, когда значения параллактических углов идентичные точки фигур, расположенных на тест-объекте, нулевые, то наблюдатель может увидеть в обобщенном изображении точки, которые расположены в произвольном порядке. Он не способен выделить на рандомизированном фоне определенную фигуру. Так исключается монокулярное видение фигуры.

При перемещении одного из тест-объектов перпендикулярно оптической оси системы изменяется параллактический угол между фигурами. Когда он достигнет некоторого значения, наблюдатель сможет увидеть фигуру, которая как бы отрывается от фона и начинает или удаляться, или же приближаться к нему. Параллактический угол измеряют при помощи оптического компенсатора, который введен в одну из ветвей прибора. Когда фигура появляется фигуры в поле зрения, ее фиксирует наблюдатель, и на индикаторе появляется соответствующее значение порога стереоскопического зрения.

Нейрофизиология стереоскопического зрения

Благодаря исследованиям в области нейрофизиологии стереоскопического зрения в первичной зрительной коре головного мозга удалось выявить специфические клетки, которые настроены на диспарантность. Они существуют двух типов:

  • клетки первого типа реагируют только тогда, когда стимулы точно попадают на корреспондирующие участки обеих сетчаток;
  • вторая разновидность клеток отвечает только в том случае, когда предмет расположен дальше точки фиксации;
  • также имеются такие клетки, которые реагируют в том случае, когда стимул находится ближе точки фиксации.

Все эти клетки обладают свойством ориентационной избирательности. Они обладают хорошей реакцией на концы линий и движущиеся стимулы. Некоторые бинокулярные стимулы обрабатываются в коре головного мозга непонятно как. Также существует борьба полей зрения. В том случае, когда на сетчатках обоих глаз создаются изображения, которые сильно различаются между собой, то часто одно из них вообще перестает восприниматься. Этот феномен означает, что, если зрительная система не способна объединить изображения на двух сетчатках, она полностью или частично отвергает один из образов.

Для нормального стереоскопического зрения нужны следующие условия:

  • адекватная работа глазодвигательной системы глазных яблок;
  • достаточная острота зрения;
  • минимальная разница в остроте зрения обоих глаз;
  • прочная связь между аккомодацией, фузией и конвергенцией;
  • небольшое различие в масштабах изображений в обоих глазах.

Если на сетчатке левого и правого глаза при рассматривании одного и того же предмета изображение имеет разные размеры или неодинаковый масштаб, это называется . Она является одной из многих причин того, что стереоскопическое зрение становится неустойчивым или вовсе отсутствует. Анизейкония чаще всего развивается при наличии (разной глаз). Если она не превышает 2 - 2,5%, то можно провести коррекцию обычными стигматическими линзами. При более высокой анизейконии приходится использовать анизейконические очки.

Одной из причин появления является нарушение связи между конвергенцией и аккомодацией. При явном косоглазии имеется не только косметический изъян, но и снижается острота остроты зрения косящего глаза. Он может вообще выключиться из процесса восприятия образов. В случае скрытого косоглазия, или гетерофории, косметический дефект отсутствует, но оно может препятствовать стереопсису. Лица с гетерофорией, превышающей 3°, не способны работать с бинокулярными приборами.

Порог стереоскопического зрения находится в зависимости от разных факторов:

  • от яркости фона;
  • контраста объектов;
  • продолжительности наблюдения.

При оптимальных условиях наблюдении порог восприятия глубины находится в диапазоне от 10 - 12 до 5″.

Оценивать, определять и исследовать стереоскопическое зрение можно несколькими методами:

  • с помощью стереоскопа по таблицам Пульфриха (в этом случае минимальный порог стереоскопического восприятия равен 15″);
  • различного вида стереоскопами с набором более точных таблиц (диапазон измерения - от 10 до 90″);
  • применяя устройство, использующее рандомизированный фон, который исключает монокулярное наблюдение объектов (допустимая погрешность измерения равна 1 - 2″).

Бинокулярная функция, сформированная у больных содружественным косоглазием в процессе ортоптического и диплоптического лечения, может быть более или менее совершенной. Слияние изображений одного и второго глаза может происходить только в одной плоскости - это плоскостное бинокулярное зрение, определяемое на цветотесте, синоптофоре и тестом Баголини.

Полноценной бинокулярная функция считается только в тех случаях, когда слияние изображений обоих глаз сопровождается восприятием глубины, объемности, стереоскопичности. Это высшая форма бинокулярной функции - стереоскопическое зрение .

Восприятие глубины, стереоскопичности возникает в связи с диспаратностью изображений на сетчатке обоих глаз. Правый и левый глаз находятся на некотором расстоянии друг от друга. Изображения каждой точки фиксируемого объекта на сетчатке одного и второго глаза несколько смещены в горизонтальном направлении по отношению к центральной ямке. Следствием этого смещения, диспаратности и является ощущение глубины, стереоскопичности.

Формирование полноценного стереоскопического зрения , по данным Р.Заксенвегера (1956), завершается к 8 году жизни ребенка.

Р.Заксенвегер вводит термин «стереоамавроз» - полное отсутствие стереоскопическою зрения (аналогично термину «амавроз» - полная слепота) и «стереоамблиопия» - функциональная неполноценность стереоскопического зрения (аналогично термину «амблиопия» - функциональное снижение центрального зрения).

Качество глубинного зрения определяется порогом. За порог глубинного зрения принимают то максимальное различие по глубине, которое обследуемый уже не способен ощутить. Чем выше порог, тем хуже глубинное зрение. Пороги глубинного зрения неодинаковы при исследовании различными приборами и на различных расстояниях. Выражаются они в миллиметрах или угловых секундах.

Появление косоглазия у ребенка разрушает его бинокулярное и стереоскопическое зрение.

Восстановление стереоскопического зрения проводится на завершающем этапе лечения косоглазия, когда уже сформировано плоскостное бинокулярное зрение и развиты нормальные фузионные резервы. При восстановлении глубинного зрения у детей с косоглазием Т.П.Кащенко (1973) отметила зависимость результатов от уровня остроты зрения обоих глаз, величины угла косоглазия и фузионной способности. В.А.Хенкин (1986) дополнительно отметил зависимость порогов глубинного зрения от сроков возникновения косоглазия, конечной остроты зрения косящего глаза, разницы в остроте зрения обоих глаз и величины анизэйконии.

Глубинное, стереоскопическое зрение тем лучше, чем позже появилось косоглазие, чем выше конечная острота зрения обоих глаз, чем лучше фузия и меньшая степень анизэйконии . При анизэйконии в 5% глубинное восприятие возможно лишь у отдельных больных и качество его очень низкое.

Следует отметить, что восстановить стереозрение удается лишь у той части детей с содружественным косоглазием, у которых оно было сформировано в какой-то степени до появления косоглазия. При врожденном и рано развившемся косоглазии воспитать стереоскопическое зрение не удается.

Для диагностики, формирования и тренировки стереоскопического зрения имеются специальные приборы

1) Классическим прибором для оценки реального глубинного зрения остается прибор с тремя спицами Говарда- Долмана (рис.47).
Он состоит из стержня длиной 50 см, на котором размещены три спицы. Две из них фиксированы по сторонам стержня, а третья, средняя, - подвижная. Для глаз на одном конце стержня сделаны горизонтальные прорези. Между глазами и спицами установлена диафрагма в виде горизонтальной щели, не позволяющая больному видеть вершины и основания спиц. Средняя спица передвигается вперед и назад.
Больной должен определить, находится ли она впереди двух спиц или сзади и в заключение установить все три спицы во фронтальной плоскости, уловив момент, когда смещаемая спица сравняется с неподвижными. Это расстояние между подвижной и неподвижными спицами определяет порог глубинного зрения.

В монографии Р.Заксенвегера «Аномалии стереоскопического зрения при косоглазии и их лечение» (1963) дано описание многих приборов, применяемых для диагностики и воспитания стереоскопического зрения. Ознакомим читателей с некоторыми из них.

Рис. 47. Прибор с тремя спицами, а) со снятой диафрагмой, б) с установленной диафрагмой.

2) (рис.48) состоит из корпуса 1, внутри которого помещены две стеклянные пластинки 3 и 4 . Они освещаются электрической лампочкой 2, помещенной за ними. На обеих пластинках наклеены маленькие круглые точки. На пластинке 3 они расположены без определенного порядка, а на пластинке 4 образуют очертания фигуры. Когда пластинки стоят непосредственно одна около другой, фигуру различить нельзя. По мере увеличения расстояния между ними, фигура, в зависимости от пространственного порога, начинает раньше или позже различаться.

Рис. 48 Параллаксный визускоп

3) (рис.49) имеет ящички 1,2,3, снабженные лампочками. Ящички можно передвигать по рельсам вперед и назад. В передней стенке ящичков есть прорези, в которые вставляют любые шаблоны, а также цветные и нейтральные фильтры.

Исследование проводят в темноте, причем часто меняют величину светового объекта, его яркость и цвет. Больной должен определить, какой из объектов стоит ближе, а какой дальше, установить объекты в одну фронтальную плоскость, расставить их равномерно по глубине и т.д.

4) (рис.50). Основу прибора составляет вертикально стоящий в средней плоскости проволочный контур, внутри которого больной должен провести металлический карандаш, не касаясь им проволоки. Прикосновение карандаша к проволоке приводит к замыканию цепи тока и возникновению звука зуммера. Взгляд больного ограничен таким образом, что он не может сбоку рассматривать проволочный остов.

Трудность задания зависит от расстояния между проволоками, образующими контур Это расстояние можно изменять с помощью установочного винта. Прибор развивает остроту глубинного зрения, так как зрительные раздражения сочетаются с проприоцептивными. Без глубинной остроты зрения, например, при пользовании одним глазом, упражнение не может быть выполнено даже после длительной тренировки.

Рис. 50 Стереозуммер

5) Бинариметр (рис.51) - прибор нового поколения, в котором использованы методы диплоптики, направленные на формирование бинокулярного и стереоскопического зрения. В бинариметре образуются пространственные зрительные эффекты, возникающие при сдваивании идентичных изображений на основе физиологического двоения в свободной гаплоскопии без оптики и разделения полей зрения.

Лечение на бинариметре проводится после того, как у больного достигнута способность к бификсации. Устройство прибора предусматривает возможность проведения лечения не только при симметричном положении глаз, но и при наличии небольших отклонений по горизонтали и вертикали.

Рис.51. Бинариметр «Бинар»

Упражнения на приборе активизируют сенсорно-моторные взаимодействия, способствуя восстановлению бинокулярного и стереоскопического зрения.
Мы использовали бинариметр в комплексе с другими методами восстановления бинокулярного и стереоскопического зрения у детей школьного возраста и подростков, так как лечение на нем требует определенного интеллекта.

21.06.2015


При обработке материалов аэрофотосъемки, дешифрировании аэроснимков и аэротаксации лесов широко применяется стереоскопическое зрение. Оно значительно повышает точность измерений, поэтому кратко ознакомимся с основными его свойствами.
Чтобы лучше уяснить сущность стереоскопического зрения, рассмотрим устройство человеческого глаза. Глаз человека представляет собой шарообразное тело, состоящее из трех оболочек; склеры, сосудистой оболочки и сетчатки (рис. 53).
Склерой называется наружная твердая белковая оболочка. К ней прилегает сосудистая оболочка, переходящая в утолщенную и непрозрачную радужную оболочку, в которой размещается зрачок глаза. Он может изменять свой диаметр, являясь диафрагмой, регулирующей количество света, попадающего в глаз.

Расстояние между центрами зрачков глаза называется глазным базисом. Он у разных людей меняется от 58 до 72 мм. В среднем он равен 65 мм. За зрачком расположен хрусталик. Он представляет собой двояковыпуклую линзу и его можно рассматривать как объектив глаза, служащий для построения на сетчатке изображений наблюдаемых предметов. Чтобы изображения различно удаленных от нас предметов были резкими, форма хрусталика при помощи мышц изменяется, в связи с чем меняется и его фокусное расстояние (от 12 до 16 мм). Способность глаза изменять кривизну поверхностей хрусталика называется аккомодацией. Оболочка выстилает внутреннюю поверхность глаза и называется сетчаткой. Чувствительные элементы ее состоят из палочек и колбочек, являющихся окончаниями разветвлений глазного нерва и передающих свое раздражение через нервную систему в мозг наблюдателя.
Палочки и колбочки расположены на сетчатке неравномерно. Важный участок сетчатки - желтое пятно. Оно является местом наиболее ясного видения, расположено в середине сетчатки, против зрачка и несколько смещено от оси симметрии глаза. Желтое пятно состоит главным образом из колбочек.
Изображение предметов, которое дает хрусталик, строится в пределах желтого пятна. Наиболее чувствительной к свету частью желтого пятна является углубление, находящееся в желтом пятне. Оно называется центральной ямкой. Диаметр ее 0,4 мм. Прямая, проходящая через центральную ямку и центр хрусталика, называется зрительной осью глаза.
Для того чтобы нормальный глаз видел предметы без особого напряжения, расстояние до них должно быть около 250 мм. Оно называется расстоянием наилучшего зрения.


Зрение одним глазом называется монокулярным. Оно позволяет определить положение предмета в плоскости и обладает определенной разрешающей способностью. Разрешающей способностью (остротой) зрения называется минимальный угол, под которым глаз еще различает две точки раздельно. Разрешающая способность глаза порядка 30-40". Она зависит от особенностей глаза и условий наблюдений.
Глубина пространства ощущается при бинокулярном зрении (зрения двумя глазами). Оно обладает двумя замечательными свойствами. Первым его свойством является слияние в зрительном впечатлении двух изображений, получаемых на сетчатках глаз, в одно пространственное изображение.
Второе свойство - оценка глубины, т. е. удаленности наблюдаемых предметов. Только на больших расстояниях бинокулярное ощущение глубины пространства не отличается от монокулярного зрения. При переходе к более близким предметам оно превращается в стереоскопическое зрение, оставаясь бинокулярным. Следовательно, стереоскопическое зрение является частным случаем бинокулярного зрения, при котором наиболее отчетливо воспринимается глубина пространства, рельефность объектов местности и их пространственное расположение.
Рассмотрим некоторые свойства стереоскопического зрения.
При бинокулярном зрении наблюдатель устанавливает глаза так, что их зрительные оси пересекаются на том предмете, который мы рассматриваем. Точка пересечения зрительных осей называется точкой фиксации М (рис. 54), При фиксации внимания на какой-либо точке возникает поле ясной видимости. Оно ограничено размером центральных ямок глаз. В пределах поля ясной видимости возникает стереоскопическое зрение наибольшей отчетливости. При стереоскопическом зрении на сетчатке глаз изображения различно удаленных точек получаются на разных расстояниях от центров желтых пятен.
Разность этих расстояний называется физиологическим параллаксом

Чем дальше по глубине точка К отстоит от точки М, тем больше будет с.
Угол пересечения зрительных осей глаз называется углом конвергенции γс. Чем ближе от наблюдателя точка, тем угол γс больше и, наоборот, при удалении точки угол γс уменьшается. Предельно малая разность параллактических углов γс-γ"с (см. рис. 54), воспринимаемая наблюдателем, называется остротой стереоскопического зрения. Величина ее порядка 20-30" для отдельно взятых точек, а для вертикальных линий - 10-15".
Из равнобедренного треугольника MSS" следует, что br/2: L = tg γc/2, где L является удалением (расстоянием) точки М от глазного базиса.
Если угол γc/2 мал, то

где γc выражен в радианах.
Эта формула позволяет судить об удалении L предметов или объектов местности от наблюдателя.
При переходе от точки М к другой точке K (рис. 55) в поле ясной видимости и при соответствующем изменении параллактического угла γ"с, преобразуя формулу (42), получим


Формулы (42) и (43) являются основными формулами стереоскопического зрения.
Если принять γc = 30", bг = 65 мм, то из формулы (42) следует, что

В данном случае угол γc равен остроте стереоскопического зрения, поэтому Lг = 450 м является радиусом невооруженного стереоскопического зрения. При расстоянии больше 450 м наблюдатель не получает пространственного восприятия объектов и местность ему должна казаться плоской.
Радиус стереоскопического зрения можно увеличить путем увеличения базиса и остроты стереоскопического зрения. С этой целью применяются специальные приборы, у которых за счет введения зеркал или призм увеличивается базис, а за счет введения линз повышается острота стереоскопического зрения. Такого рода приборы называются стереоскопическими.
Стереоскопическое восприятие можно получить, не только рассматривая сами предметы местности, но и их перспективные изображения - аэроснимки.
Во время плановой аэросъемки каждый следующий аэроснимок на 60% перекрывает предыдущий аэроснимок.


Расположим смежные аэроснимки - стереопару перед глазами так, чтобы в поле зрения находились перекрывающиеся части и базис съемки был параллелен глазному базису (рис. 56).
Раздвигая эти аэроснимки вдоль линии базиса аэрофотосъемки на соответствующую величину и рассматривая одно и то же изображение в местах перекрытия левым и правым глазом, получим вместо двух одно пространственное изображение местности, дающее ясное представление о соотношении высоты между различными объектами. Стереоскопическое изображение заснятой местности называется стереоскопической моделью местности.
Стереоскопический эффект возникает потому, что разность продольных параллаксов Δр точек аэроснимков при рассматривании преобразуется в разность физиологических параллаксов.
Для получения стереоэффекта пользуются специальными приборами - стереоскопами. Стереоскоп позволяет одним глазом видеть одно изображение, другим - другое.
Если левый глаз видит левый аэроснимок, а правый - правый, то возникает прямой стереоэффект (горы изображаются горами, лощины - лощинами), рис, 56, а.
Если левый глаз видит правый аэроснимок, а правый-левый, возникает обратный стереоэффект (горы изображаются лощинами, а лощины - горами) - см. рис. 56,6, Если аэроснимки, подготовленные для прямого стереоэффекта, повернуть на 90°, то возникает нулевой стереоэффект. В этом случае все объекты будут казаться лежащими в одной плоскости (см. рис. 56,а).
Рассмотрим устройство зеркального стереоскопа. Он состоит из четырех зеркал, попарно параллельных между собой (рис. 57).


При работе с зеркальным стереоскопом лучи o1m1 и o2m2 которые от аэроснимка первоначально идут вертикально, после отражения пойдут горизонтально, затем от вторых зеркал опять пойдут вертикально и попадут в глаза наблюдателю.
Расстояние o1m1k1S1 = o2m2k2S2 = fc, где главное расстояние стереоскопа, измеряемое от центра зеркала по ходу луча до аэрофотоснимка.
Следует заметить, что при рассматривании аэрофотоснимков под стереоскопом получается мнимая модель (стереомодель), так как действительного пересечения лучей не происходит.
Увеличение видимого изображения на аэрофотоснимках, рассматриваемых под стереоскопом, равно отношению расстояния наилучшего зрения ρ0 к главному расстоянию стереоскопа Vc = ρ0/fc. У зеркального стереоскопа fс = 250, поэтому Vc = 1X.
Если между зеркалами установлены линзы, то fc замеряется от центра линзы по ходу главного луча до плоскости аэроснимка.
Для определения тон минимальном разности высот hmin (превышений точек), которые видим на аэроснимках, преобразуем вторую из основных формулу стереозрения ΔL = L2v/bг, в которой ΔL заменим hmin (или Δh), L - высотой фотографирования Н, bг - базисом фотографирования В.
Тогда получим

С учетом относительного увеличения стереоскопа формула для hmin примет следующий вид:

Но базис b в масштабе аэроснимка b = B f/H. Тогда hmin = H2fc/bH v, или hmin = Hfc/b v. По этой формуле определяется минимальная разность высоты объектов, оцениваемая с помощью стереоскопа.
При визуальной оценке высоты с помощью стереоскопа следует учесть, что имеет место различие в вертикальных и горизонтальных масштабах стереомодели, вследствие чего утрируются вертикальные размеры объектов местности и ее рельеф.
Для вывода формулы вертикального масштаба воспользуемся следующими формулами стереофотограмметрии:
формулой, применяемой для определения превышения объекта, наблюдаемого в стереоскоп hс,

Из этой формулы (47) следует:

Если учесть увеличение стереоскопом vс, то формула примет следующий вид:

Эта формула показывает, что вертикальный масштаб будет крупнее горизонтального во столько раз, во сколько f меньше ρ0 (250 мм) (полагая, что для 60%-кого продольного перекрытия аэроснимков формата 18x18 см b≈bг) и увеличивается пропорционально величине vc. Например, при аэрофотосъемке аэрофотоаппаратами с фокусным расстоянием 70 и 100 мм и при расстоянии в стереоскопе от глаза до аэроснимка ρ0=250 мм, видимый в стереоскоп рельеф окажется утрированным, т. е. вытянутым вверх в 3,5 и 2,5 раза по сравнению с действительным.
Изложенные выше свойства стереомодели необходимо внимательно учитывать при лесном дешифрировании аэроснимков и особенно при глазомерно-стереоскопическом способе измерения высоты деревьев и насаждений.

В книге известного американского нейрофизиолога, лауреата Нобелевской премии, обобщены современные представления о том, как устроены нейронные структуры зрительной системы, включая кору головного мозга, и как они перерабатывают зрительную информацию. При высоком научном уровне изложения книга написана простым, ясным языком, прекрасно иллюстрирована. Она может служить учебным пособием по физиологии зрения и зрительного восприятия.

Для студентов биологических и медицинских вузов, нейрофизиологов, офтальмологов, психологов, специалистов по вычислительной технике и искусственному интеллекту.

Книга:

<<< Назад
Вперед >>>

Механизм оценки удаленности, основанный на сравнении двух сетчаточных изображений, настолько надежен, что многие люди (если они не психологи и не специалисты по физиологии зрения) даже не подозревают о его существовании. Для того чтобы убедиться в важности этого механизма, попробуйте в течение нескольких минут вести автомобиль или велосипед, играть в теннис или прокатиться на лыжах, закрыв один глаз. Стереоскопы вышли из моды, и вы можете найти их только в антикварных магазинах. Однако большинство читателей смотрели стереоскопические фильмы (когда зрителю приходится надевать специальные очки). Принцип действия как стереоскопа, так и стереоскопических очков основан на использовании механизма стереопсиса.

Изображения на сетчатках двумерны, а между тем мы видим мир трехмерным. Очевидно, что как для человека, так и для животных важна способность определять расстояние до объектов. Точно так же восприятие трехмерной формы предметов означает оценку относительной глубины. Рассмотрим в качестве простого примера круглый предмет. Если он расположен наклонно по отношению к линии взора, его изображение на сетчатках будет эллиптическим, однако обычно мы без труда воспринимаем такой предмет как круглый. Для этого необходима способность к восприятию глубины.

Человек обладает многими механизмами оценки глубины. Некоторые из них столь очевидны, что вряд ли заслуживают упоминания. Тем не менее я их упомяну. Если приблизительно известна величина объекта, например в случае таких объектов, как человек, дерево или кошка, то можно оценить расстояние до него (правда, есть риск ошибиться, если мы столкнемся с карликом, карликовым деревом или львом). Если один предмет расположен впереди другого и частично его заслоняет, то мы воспринимаем передний объект как расположенный ближе. Если взять проекцию параллельных линий, например железнодорожных рельсов, уходящих вдаль, то в проекции они будут сближаться. Это пример перспективы - весьма эффективного показателя глубины. Выпуклый участок стены кажется более светлым в верхней своей части, если источник света расположен выше (обычно источники света и находятся вверху), а углубление в ее поверхности, если оно освещается сверху, кажется в верхней части более темным. Если же источник света поместить внизу, то выпуклость будет выглядеть как углубление, а углубление - как выпуклость. Важным признаком удаленности служит параллакс движения - кажущееся относительное смещение близких и более далеких предметов, если наблюдатель будет двигать головой влево и вправо или вверх и вниз. Если какой-то твердый предмет поворачивается, пусть даже на небольшой угол, то сразу же выявляется его трехмерная форма. Если мы фокусируем хрусталик нашего глаза на близко расположенном предмете, то более удаленный предмет будет не в фокусе; таким образом, меняя форму хрусталика, т.е. изменяя аккомодацию глаза (см. гл. 2 и 6), мы получаем возможность оценивать удаленность предметов. Если изменять относительное направление осей обоих глаз, сводя их или разводя (осуществляя конвергенцию или дивергенцию), то можно свести вместе два изображения предмета и удерживать их в этом положении. Таким образом, управляя либо хрусталиком, либо положением глаз, можно оценить удаленность объекта. На этих принципах основаны конструкции ряда дальномеров. За исключением конвергенции и дивергенции, все остальные показатели удаленности, перечисленные до сих пор, являются монокулярными. Наиболее важный механизм восприятия глубины - стереопсис - зависит от совместного использования двух глаз. При рассматривании любой трехмерной сцены два глаза формируют несколько различные изображения на сетчатке. Вы легко можете в этом убедиться, если будете смотреть прямо вперед и быстро перемещать голову из стороны в сторону примерно на 10 см или же быстро закрывать поочередно то один, то другой глаз. Если перед вами плоский объект, вы не заметите особой разницы. Однако, если сцена включает предметы на разном расстоянии от вас, вы заметите существенные изменения в картине. В процессе стереопсиса мозг сравнивает изображения одной и той же сцены на двух сетчатках и с большой точностью оценивает относительную глубину.

Предположим, наблюдатель фиксирует взором некоторую точку P. Это утверждение эквивалентно тому, как если мы скажем: глаза направляются таким образом, чтобы изображения точки оказались в центральных ямках обоих глаз (F на рис. 103). Предположим теперь, что Q - это другая точка пространства, которая кажется наблюдателю расположенной на такой же глубине, что и P. Пусть Q L и Q R - изображения точки Q на сетчатках левого и правого глаза. В этом случае точки Q L и Q R называют корреспондирующими точками двух сетчаток. Очевидно, что две точки, совпадающие с центральными ямками сетчаток, будут корреспондирующими. Из геометрических соображений ясно также, что точка Q", оцениваемая наблюдателем как расположенная ближе, чем Q, будет давать на сетчатках две проекции - Q" L и Q" R - в некорреспондирующих точках, расположенных дальше друг от друга, чем в том случае, если бы эти точки были корреспондирующими (эта ситуация изображена в правой части рисунка). Точно так же, если рассматривать точку, расположенную дальше от наблюдателя, то окажется, что ее проекции на сетчатках будут расположены ближе друг к другу, чем корреспондирующие точки. То, что сказано выше о корреспондирующих точках, - это частично определения, а частично утверждения, вытекающие из геометрических соображений. При рассмотрении этого вопроса учитывается также психофизиология восприятия, поскольку наблюдатель субъективно оценивает, дальше или ближе точки P расположен объект. Введем еще одно определение. Все точки, которые, подобно точке Q (и, конечно, точке P), воспринимаются как равноудаленные, лежат на гороптере - поверхности, проходящей через точки P и Q, форма которой отличается как от плоскости, так и от сферы и зависит от нашей способности оценивать удаленность, т.е. от нашего мозга. Расстояния от центральной ямки F до проекций точки Q (Q L и Q R) близки, но не равны. Если бы они всегда были равны, то линия пересечения гороптера с горизонтальной плоскостью представляла бы собой круг.


Рис. 103. Слева: если наблюдатель смотрит на точку P, то два ее изображения (проекции) попадают на центральные ямки двух глаз (точки F). Q - точка, которая, по оценке наблюдателя, находится на таком же расстоянии от него, что и P. В этом случае говорят, что две проекции точки Q (Q L и Q R) попадают в корреспондирующие точки сетчаток. (Поверхность, составленную из всех точек Q, которые кажутся находящимися на одинаковом расстоянии от наблюдателя, таком же, как точка P, называют гороптером, проходящим через точку P). Справа: если точка Q" находится ближе к наблюдателю, чем Q, то ее проекции на сетчатках (Q" L и Q" R) будут отстоять друг от друга по горизонтали дальше, чем если бы они находились в корреспондирующих точках. Если бы точка Q" находилась дальше, то проекции Q" L и Q" R оказались бы сдвинутыми по горизонтали ближе друг к другу.

Предположим теперь, что мы фиксируем взглядом некоторую точку в пространстве и что в этом пространстве расположены два точечных источника света, которые дают проекцию на каждой сетчатке в виде световой точки, причем эти точки - не корреспондирующие: расстояние между ними несколько больше, чем между корреспондирующими точками. Любое такое отклонение от положения корреспондирующих точек мы будем называть диспаратностью. Если это отклонение в горизонтальном направлении не превышает 2° (0,6 мм на сетчатке), а по вертикали не больше нескольких угловых минут, то мы будем зрительно воспринимать одиночную точку в пространстве, расположенную ближе, чем та, которую мы фиксируем. Если же расстояния между проекциями точки будут не больше, а меньше, чем между корреспондирующими точками, то данная точка будет казаться расположенной дальше, чем точка фиксации. Наконец, в том случае, если вертикальное отклонение будет превышать несколько угловых минут или же горизонтальное будет больше 2°, то мы увидим две отдельные точки, которые, возможно, покажутся расположенными дальше или ближе точки фиксации. Эти экспериментальные результаты иллюстрируют основной принцип стереовосприятия, впервые сформулированный в 1838 году сэром Ч. Уитстоном (который также изобрел прибор, известный в электротехнике как «мостик Уитстона»).

Кажется почти невероятным, что до этого открытия ни один человек, по-видимому, не отдавал себе отчета в том, что наличие едва заметных различий в изображениях, проецируемых на сетчатки двух глаз, может приводить к отчетливому впечатлению глубины. Такой стереоэффект может продемонстрировать за несколько минут любой человек, способный произвольно сводить или разводить оси своих глаз, или же тот, у кого есть карандаш, кусок бумаги и несколько небольших зеркал или призм. Непонятно, как прошли мимо этого открытия Евклид, Архимед и Ньютон. В своей статье Уитстон отмечает, что Леонардо да Винчи был очень близок к открытию этого принципа. Леонардо указывал, что шар, расположенный перед какой-либо пространственной сценой, виден каждым глазом по-разному - левым глазом мы немного дальше видим его левую сторону, а правым глазом - правую. Далее Уитстон отмечает, что если бы вместо шара Леонардо выбрал куб, то он, безусловно, заметил бы, что его проекции для разных глаз различны. После этого он мог бы, как и Уитстон, заинтересоваться тем, что будет, если специально спроецировать два подобных изображения на сетчатки двух глаз.

Важным физиологическим фактом является то, что ощущение глубины (т.е. возможность «непосредственно» видеть, дальше или ближе точки фиксации расположен тот или иной объект) возникает в тех случаях, когда два сетчаточных изображения несколько смещены относительно друг друга в горизонтальном направлении - раздвинуты или, наоборот, сближены (если только это смещение не превышает примерно 2°, а вертикальное смещение близко к нулю). Это, разумеется, соответствует геометрическим соотношениям: если по отношению к некоторой точке отсчета расстояния объект расположен ближе или дальше, то его проекции на сетчатках будут раздвинуты или сближены по горизонтали, тогда как существенного вертикального смещения изображений не произойдет.

На этом и основано действие стереоскопа, изобретенного Уитстоном. Стереоскоп в течение примерно полувека был настолько популярен, что имелся чуть ли не в каждом доме. Тот же принцип лежит в основе и стереокино, которое мы сейчас смотрим, используя для этого специальные поляроидные очки. В первоначальной конструкции стереоскопа наблюдатель рассматривал два изображения, помещенные в ящик, с помощью двух зеркал, которые были расположены таким образом, что каждый глаз видел только одно изображение. Для удобства теперь часто используют призмы и фокусирующие линзы. Два изображения идентичны во всем, кроме небольших горизонтальных смещений, которые и создают впечатление глубины. Любой может изготовить фотографию, пригодную для использования в стереоскопе, если выберет какой-либо неподвижный объект (или сцену), сделает снимок, а затем сдвинет фотоаппарат на 5 сантиметров вправо или влево и сделает второй снимок.

Не все обладают способностью воспринимать глубину с помощью стереоскопа. Вы сами можете легко проверить свой стереопсис, если воспользуетесь стереопарами, приведенными на рис. 105 и 106. Если у вас есть стереоскоп, вы можете сделать копии изображенных здесь стереопар и вставить их в стереоскоп. Вы можете также поместить тонкий кусок картона перпендикулярно между двумя изображениями из одной стереопары и попытаться смотреть каждым глазом на свое изображение, установив глаза параллельно, как если бы вы смотрели вдаль. Можно также научиться сводить и разводить глаза с помощью пальца, поместив его между глазами и стереопарой и передвигая вперед или назад, пока изображения не сольются, после чего (это самое трудное) вы сможете рассматривать слитое изображение, стараясь, чтобы оно не разделилось на два. Если у вас это получится, то кажущиеся отношения глубины будут противоположны тем, которые воспринимаются при использовании стереоскопа.



Рис. 104. А. Стереоскоп Уитстона. Б. Схема стереоскопа Уитстона, составленная им самим. Наблюдатель сидит перед двумя зеркалами (А и А"), поставленными под углом 40° к направлению его взора, и смотрит на две совмещенные в поле зрения картинки - Е (правым глазом) и Е" (левым глазом). В созданном позже более простом варианте две картинки помещаются рядом так, что расстояние между их центрами примерно равно расстоянию между глазами. Две призмы отклоняют направление взора так, что при надлежащей конвергенции левый глаз видит левое изображение, а правый глаз - правое изображение. Вы сами можете попробовать обойтись без стереоскопа, представив себе, что смотрите на очень удаленный предмет глазами, оси которых установлены параллельно друг другу. Тогда левый глаз будет смотреть на левое изображение, а правый - на правое.

Даже если вам не удастся повторить опыт с восприятием глубины - из-за того ли, что у вас нет стереоскопа, или потому, что вы не можете произвольно сводить и разводить оси глаз, - вы все-таки сможете понять суть дела, хотя не получите удовольствия от стереоэффекта.

В верхней стереопаре на рис. 105 в двух квадратных рамках имеется по небольшому кружку, один из которых смещен немного влево от центра, а другой - немного вправо. Если рассматривать эту стереопару двумя глазами, используя стереоскоп или иной метод совмещения изображений, то вы увидите кружок не в плоскости листа, а впереди него на расстоянии около 2,5 см. Если так же рассматривать нижнюю стереопару на рис. 105, то кружок будет виден позади плоскости листа. Вы воспринимаете положение кружка таким образом потому, что на сетчатки ваших глаз попадает в точности такая же информация, как если бы кружок действительно находился впереди или позади плоскости рамки.


Рис. 105. Если верхнюю стереопару вставить в стереоскоп, то кружок будет выглядеть расположенным впереди плоскости рамки. В нижней стереопаре он будет располагаться позади плоскости рамки. (Вы можете проделать такой опыт без стереоскопа, путем конвергенции или дивергенции глаз; для большинства людей конвергенция легче. Для облегчения задачи можно взять кусок картона и поставить его между двумя изображениями стереопары. Поначалу это упражнение может показаться вам трудным и утомительным; не усердствуйте при первой попытке. При конвергенции глаз на верхней стереопаре кружочек будет виден дальше плоскости, а на нижней - ближе).

В 1960 году Бела Юлеш из фирмы Bell Telephone Laboratories придумал весьма полезную и изящную методику для демонстрации стереоэффекта. Изображение, представленное на рис. 107, на первый взгляд кажется однородной случайной мозаикой из маленьких треугольничков. Так оно и есть, за исключением того, что в центральной части имеется скрытый треугольник большего размера. Если вы будете рассматривать это изображение с помощью двух кусочков цветного целлофана, помещенных перед глазами, - красного перед одним глазом и зеленого перед другим, то вы должны увидеть в центре треугольник, выступающий из плоскости листа вперед, как в предыдущем случае с маленьким кружком на стереопарах. (Быть может, в первый раз вам придется смотреть минуту или около этого, пока не возникнет стереоэффект.) Если поменять куски целлофана местами, произойдет инверсия глубины. Ценность этих стереопар Юлеша заключается в том, что если у вас нарушено стереовосприятие, то вы не увидите треугольника впереди или позади окружающего фона.


Рис. 106. Еще одна стереопара.

Подводя итоги, можно сказать, что наша способность ощущать стереоэффект зависит от пяти условий:

1. Имеется много косвенных признаков глубины - частичное заслонение одних предметов другими, параллакс движения, вращение предмета, относительные размеры, отбрасывание теней, перспектива. Однако наиболее мощным механизмом является стереопсис.

2. Если мы фиксируем взглядом какую-то точку в пространстве, то проекции этой точки попадают в центральные ямки обеих сетчаток. Любая точка, которая оценивается как расположенная на том же расстоянии от глаз, что и точка фиксации, образует две проекции в корреспондирующих точках сетчаток.

3. Стереоэффект определяется простым геометрическим фактом - если некоторый объект находится ближе точки фиксации, то две его проекции на сетчатках оказываются дальше друг от друга, чем корреспондирующие точки.

4. Главный вывод, основанный на результатах экспериментов с испытуемыми, заключается в следующем: объект, проекции которого на сетчатках правого и левого глаза попадают на корреспондирующие точки, воспринимается как расположенный на том же расстоянии от глаз, что и точка фиксации; если проекции этого объекта раздвинуты по сравнению с корреспондирующими точками, объект кажется расположенным ближе точки фиксации; если же они, наоборот, сближены, объект кажется расположенным дальше точки фиксации.

5. При горизонтальном смещении проекций больше чем на 2° или вертикальном смещении больше нескольких угловых минут возникает двоение.


Рис. 107. Для того чтобы получить это изображение, называемое анаглифом, Бела Юлес сначала построил две системы случайно расположенных маленьких треугольников; они различались только тем, что 1) в одной системе были красные треугольники на белом фоне, а в другой - зеленые на белом фоне; 2) в пределах большой треугольной зоны (вблизи центра рисунка) все зеленые треугольники несколько смещены влево по сравнению с красными. После этого две системы совмещаются, но с небольшим сдвигом, так что сами треугольники не накладываются друг на друга. Если на полученное изображение смотреть через зеленый фильтр из целлофана, то будут видны только красные элементы, а если через красный фильтр - только зеленые. Если же перед одним глазом поместить зеленый фильтр, а перед другим - красный, то вы увидите большой треугольник, выступающий примерно на 1 см перед страницей. В случае перемены фильтров местами треугольник будет виден за плоскостью страницы.

<<< Назад
Вперед >>>