Давление газа. Давление газа на стенки сосуда

ОПРЕДЕЛЕНИЕ

Давление в сосуде с газом создается ударами молекул о его стенку.

Вследствие теплового движения частицы газа время от времени ударяются о стенки сосуда (рис.1,а). При каждом ударе молекулы действуют на стенку сосуда с некоторой силой. Складываясь друг другом, силы ударов отдельных частиц, образуют некоторую силу давления, постоянно действующую на стенку сосуда. Молекулы газа при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела и передают свои импульсы стенкам сосуда (рис.1,б).

Рис.1. Давление газа на стенку сосуда: а) возникновение давления вследствие ударов о стенку хаотически движущихся частиц; б) сила давления как результат упругого удара частиц.

На практике чаще всего имеют дело не с чистым газом, а со смесью газов. Например, атмосферный воздух представляет собой смесь азота, кислорода, углекислого газа, водорода и других газов. Каждый из газов, входящих в состав смеси, вносит свой вклад в суммарное давление, которое оказывает смесь газов на стенки сосуда.

Для газовой смеси справедлив закон Дальтона :

давление газовой смеси равно сумме парциальных давлений каждого компонента смеси:

ОПРЕДЕЛЕНИЕ

Парциальное давление — давление, которое бы занимал газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при данной температуре (рис.2).


Рис.2. Закон Дальтона для газовой смеси

С точки зрения молекулярно-кинетической теории закон Дальтона выполняется потому, что взаимодействие между молекулами идеального газа пренебрежимо мало. Поэтому каждый газ оказывает на стенку сосуда давление, как если бы остальных газов в сосуде не было.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание В закрытом сосуде находится смесь 1 моля кислорода и 2 молей водорода . Сравните парциальные давления обоих газов (давление кислорода) и (давление водорода):
Ответ Давление газа обусловлено ударами молекул о стенки сосуда, оно не зависит от вида газа. В условиях теплового равновесия температура газов, входящих в состав газовой смеси, в данном случае кислорода и водорода, одинакова. Это значит, что парциальные давления газов зависят от количества молекул соответствующего газа. В одном моле любого вещества содержится

Как изменяется давление идеального газа?

Идеальный газ представляет собой физическую модель газа. Эта модель практически не учитывает взаимодействие молекул между собой. Она используется для описания поведения газов с математической точки зрения. Данная модель предполагает следующие свойства газа:

  • размер молекул больше, чем расстояние между молекулами;
  • молекулы представляют собой круглый шары;
  • отталкиваются молекулы друг от друга и от стенок сосуда только после соударения. Соударения совершенно упруги;
  • двигаются молекулы в соответствии с законами Ньютона.

Существует несколько видов идеального газа:

  • классический;
  • квантовый (рассматривает идеальный газ в условиях понижения температуры и увеличения расстояния между молекулами);
  • в гравитационном поле (рассматривает изменения свойств идеального газа в гравитационном поле).

Ниже будет рассмотрен классический идеальный газ.

Как определить давление идеального газа?

Фундаментальная зависимость всех идеальных газов выражается с помощью уравнения Менделеева-Клапейрона.

PV=(m/M).RT [Формула 1]

  • P — давление. Единица измерения — Па (Паскаль)
  • R=8,314 — универсальная газовая постоянная. Единица измерения — (Дж/моль.К)
  • T — температура
  • V — объем
  • m — масса газа
  • M — молярная масса газа. Единица измерения — (г/моль).

P = nkT [Формула 2]

Формула 2 показывает, что давление идеального газа зависит от концентрации молекул и температуры. Если учесть особенности идеального газа, то n будет определятся формулой:

n = mNа/MV [Формула 3]

  • N - число молекул в сосуде
  • N а - постоянная Авогадро

Подставив формулу 3 в формулу 2, получаем:

  • PV = (m/M)Nа kT [Формула 4]
  • k*N а = R [Формула 5]

Постоянная R является константой для одного моля газа в равенстве Менделеева-Клапейрона (вспомним: при постоянных давлении и температуре 1 моль различных газов занимает одинаковый объем).

Теперь выведем уравнение давления для идеального газа

m/M = ν [Формула 6]

  • где ν — количества вещества. Единица измерения — моль

Получаем уравнение давления идеального газа, формула приведена ниже:

P=νRT/V [Формула 7]

  • где P — давление. Единица измерения — Па (Паскаль)
  • R= 8,314 — универсальная газовая постоянная. Единица измерения — (Дж/моль.К)
  • T — температура
  • V — объем.

Как изменится давление идеального газа?

Проанализировав равенство 7, можно увидеть, что давление идеального газа пропорционально изменению температуры и концентрации.

В состоянии идеального газа возможны изменения всех параметров, от которых он зависит, а возможны изменения и некоторых из них. Рассмотрим наиболее вероятные ситуации:

  • Изотермический процесс. Этот процесс характеризуется тем, что температура в нем будет постоянна (T = const). Если в уравнение 1 подставить постоянную температуру, то увидим, что значение произведения P*V тоже будет постоянным.
    • PV = const [Формула 8]

Равенство 8 показывает зависимость между объемом газа и его давлением при постоянной температуре. Это уравнение было в 17 веке открыто экспериментальным путем физиками Робертом Бойлем и Эдмом Мариоттом. Уравнение назвали в их честь законом Бойля-Мариотта.

  • Изохорный процесс. В этом процессе постоянным остается объем, масса газа и его молярная масса. V= const, m = const, M = const. Таким образом, получаем давления идеального газа. Формула показана ниже:
    • P= P 0 AT [Формула 9]
    • Где: P — давление газа при абсолютной температуре,
    • P 0 — давление газа при температуре 273° K (0° C),
    • A — температурный коэффициент давления. A = (1/273,15) К -1

Эта зависимость была открыта в 19 веке экспериментальным путем физиком Шарлем. Поэтому уравнение и носит название своего создателя - закон Шарля.

Изохорный процесс можно наблюдать, если при постоянном объеме нагревать газ.

  • Изобарный процесс. Для этого процесса постоянными будут давление, масса газа и его молярная масса. P = const, m = const, M = const. Уравнение изобарного процесса имеет вид:
    • V/T = const или V = V 0 AT [Формула 10]
    • где: V 0 — объем газа при температуре 273° K (0° C);
    • A = (1/273,15) К -1 .

В данной формуле коэффициент А выступает температурным коэффициентом для объемного расширения газа.

Эта зависимость была открыта в 19 веке физиком Жозефом Гей-Люссаком. Именно поэтому это равенство носит его имя — закон Гай-Люссака.

Если взять стеклянную колбу, соединенную с трубкой, отверстие которой будет закрыто жидкостью, и нагревать конструкцию, то можно будет наблюдать изобарный процесс.

Стоит отметить, что воздух при комнатной температуре имеет свойства, схожие с идеальным газом.

Вопрос 1

Основные положения МКТ и их опытные обоснования.?

1. Все вещества состоят из молекул, т.е. имеют дискретное строение, молекулы разделены промежутками.

2. Молекулы находятся в непрерывном беспорядочном (хаотическом) движении.

3. Между молекулами тела существуют силы взаимодействия.

Броуновское движение?.

Броуновское движение - это непрерывное беспорядочное движение взвешенных в газе частиц.

Силы молекулярного взаимодействия?.

Между молекулами одновременно действует и притяжение и отталкивание. Природа взаимодействия молекул электромагнитная.

Кинетическая и потенциальная энергия молекул?.

Атомы и молекулы взаимодействуют и, следовательно, обладают потенциальной энергией E п.

Потенциальная энергия считается положительной при отталкивании молекул, отрицательной - при притяжении.

Вопрос 2

Размеры и масс молекул и атомов

Любое вещество состоит из частиц, поэтому количество вещества v(ню) принято считать пропорциональным числу частиц, т. е. структурных элементов, содержащихся в теле.

Единицей количества вещества является моль. Моль - это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С12. Отношение числа молекул вещества к количеству вещества называют постоянной Авогадро:

N A =N/v(ню); N A =6,02*10 23 моль -1

Постоянная Авогадро показывает, сколько атомов и молекул содержится в одном моле вещества. Молярная масса - масса одного моля вещества, равная отношению массы вещества к количеству вещества:

Молярная масса выражается в кг/моль. Зная молярную массу, можно вычислить массу одной молекулы:

m 0 =m/N=m/v(ню)N A =M/N A

Средняя масса молекул обычно определяется химическими методами, постоянная Авогадро с высокой точностью определена несколькими физическими методами. Массы молекул и атомов со значительной степенью точности определяются с помощью масс-спектрографа.

Массы молекул очень малы. Например, масса молекулы воды: m=29,9*10 -27

Молярная масса связана с относительной молекулярной массой Мг. Относительная молекулярная масса - это величина, равная отношению массы молекулы данного вещества к 1/12 массы атома углерода С12. Если известна химическая формула вещества, то с помощью таблицы Менделеева может быть определена его относительная масса, которая, будучи выражена в килограммах, показывает величину молярной массы этого вещества.


Число Авогадро

Число́ Авога́дро, конста́нта Авогадро - физическая константа, численно равная количеству специфицированных структурных единиц (атомов, молекул, ионов, электронов или любых других частиц) в 1 моле вещества. Определяется как количество атомов в 12 граммах (точно) чистого изотопа углерода-12. Обозначается обычно как N A , реже как L

N A = 6,022 140 78(18)×10 23 моль −1 .

Количество молей

Моль (обозначение: моль, международное: mol) - единица измерения количества вещества. Соответствует количеству вещества, в котором содержится N A частиц (молекул, атомов, ионов, или любых других тождественных структурных частиц). N A это постоянная Авогадро, равная количеству атомов в 12 граммах нуклида углерода 12C. Таким образом, количество частиц в одном моле любого вещества постоянно и равно числу Авогадро N A .

Скорость молекул

Состояние вещества

Агрега́тноесостоя́ние - состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.

Выделяют три основных агрегатных состояния: твёрдое тело, жидкость и газ. Иногда не совсем корректно к агрегатным состояниям причисляют плазму. Существуют и другие агрегатные состояния, например, жидкие кристаллы или конденсат Бозе - Эйнштейна.

Вопрос 3

Идеальный газ, давление газа

Идеальный газ- это газ, в котором отсутствует сила взаимодействия между молекулами.

Давление газа обусловлено ударами молекул. Сила давления за 1 секунду о единичную поверхность называют давлением газа.

P – давление газа [па]

1 мм рт. ст. =133 Па

P 0 (ро)=101325 Па

P= 1/3*m 0 *n*V 2 -основное уравнение МКТ

n – концентрация молекул [м -3 ]

n=N/V - концентрация молекул

V 2 – средняя квадратичная скорость

P= 2/3*n*E K основные уравнения

P= n*k*T МКТ

E K –кинетическая энергия

E K = 3/2kT (kT- котЭ)

Для решения некоторых физических задач бывает нужно рассчитывать давление газа . При этом в задаче может упоминаться как окаймляющий воздух и пары вещества, так и газ, тот, что находится в сосуде. Как именно вычислить давление газа , зависит от того, какие параметры заданы в задаче.

Вам понадобится

  • – формулы для расчета давления газа.

Инструкция

1. Обнаружьте давление безукоризненного газа при наличии значений средней скорости молекул, массы одной молекулы и концентрации вещества по формуле P=?nm0v2, где n – насыщенность (в граммах либо молях на литр), m0 – масса одной молекулы.

2. Если в условии дана плотность газа и средняя скорость его молекул, рассчитайте давление по формуле P=??v2, где? - плотность в кг/м3.

3. Вычислите давление , если вы знаете температуру газа и его концентрацию, применяя формулу P=nkT, где k – непрерывная Больцмана (k=1,38·10-23 моль·К-1), Т - температура по безусловной шкале Кельвина.

4. Обнаружьте давление из 2-х равноценных вариантов уравнения Менделеева-Клайперона в зависимости от знаменитых значений: P=mRT/MV либо P=?RT/V, где R – универсальная газовая непрерывная (R=8,31 Дж/моль·К), ? - число вещества в молях, V – объем газа в м3.

5. Если в условии задачи указана средняя кинетическая энергия молекул газа и его насыщенность, обнаружьте давление с подмогой формулы P=?nEк, где Eк - кинетическая энергия в Дж.

6. Обнаружьте давление из газовых законов - изохорного (V=const) и изотермического (T=const), если дано давление в одном из состояний. При изохорном процессе отношение давлений в 2-х состояниях равно отношению температур: P1/P2=T1/T2. Во втором случае, если температура остается непрерывной величиной, произведение давления газа на его объем в первом состоянии равно тому же произведению во втором состоянии: P1·V1=P2·V2. Выразите незнакомую величину.

7. Рассчитайте давление из формулы внутренней энергии безукоризненного одноатомного газа : U=3·P·V/2, где U – внутренняя энергия в Дж. Отсель давление будет равняться: P=?·U/V.

8. При расчете парциального давления пара в воздухе, если в условии даны температура и относительная влажность воздуха, выразите давление из формулы?/100=Р1/Р2, где?/100 - относительная влажность, Р1 - парциальное давление водяного пара, Р2 - наивысшее значение паров воды при данной температуре. В ходе расчета пользуйтесь таблицами зависимости максимальной упругости пара (максимального парциального давления) от температуры в градусах Цельсия.

Даже приложив малое усилие, дозволено сделать существенное давление . Все, что для этого нужно – сосредоточить это усилие на маленький площади. И напротив, если равномерно распределить по крупной площади существенное усилие, давление получится относительно малым. Дабы узнать, каким именно, придется провести расчет.

Инструкция

1. Переведите все начальные данные в единицы системы СИ: силу – в ньютоны, массу – в килограммы, площадь – в квадратные метры и т.п. Тогда давление позже расчета будет выражено в паскалях.

2. В случае если в задаче приведена не сила, а масса груза, вычислите силу по дальнейшей формуле:F=mg, где F – сила (Н), m – масса (кг), g – убыстрение свободного падения, равное 9,80665 м/с?.

3. Если в условиях взамен площади указаны геометрические параметры области, на которую оказывается давление , сначала рассчитайте площадь этой области. Скажем, для прямоугольника:S=ab, где S – площадь (м?), a – длина (м), b – ширина (м).Для круга:S=?R?, где S – площадь (м?), ? – число «пи», 3,1415926535 (безразмерная величина), R – радиус (м).

4. Дабы узнать давление , поделите усилие на площадь:P=F/S, где P – давление (Па), F – сила (н), S – площадь (м?).

5. При необходимости переведите давление в производные единицы: килопаскали (1 кПа=1000 Па) либо мегапаскали (1 МПа=1000000 Па).

6. Для перевода давления из паскалей в атмосферы либо миллиметры ртутного столба воспользуйтесь следующими соотношениями: 1 атм=101325 Па=760 мм рт. ст.

7. В ходе подготовки сопроводительной документации к товарам, предуготовленным для поставки на экспорт, может понадобиться выразить давление в фунтах на квадратный дюйм (PSI – pounds per square inch). В этом случае руководствуйтесь дальнейшим соотношением: 1 PSI=6894,75729 Па.

Видео по теме

Выдержит ли ведро, если налить в него воды? А если налить туда больше тяжелую жидкость? Для того дабы ответить на данный вопрос, нужно рассчитать давление , которое оказывает жидкость на стенки того либо другого сосуда. Это дюже зачастую бывает нужно на производстве – скажем, при изготовлении цистерн либо резервуаров. Исключительно главно рассчитать крепкость емкостей, если речь идет об опасных жидкостях.

Вам понадобится

  • Сосуд
  • Жидкость с вестимой плотностью
  • Знание закона Паскаля
  • Ареометр либо пикнометр
  • Мерная мензурка
  • Таблица поправок для взвешивания на воздухе
  • Линейка

Инструкция

1. Определите плотность жидкости. Обыкновенно это делается с поддержкой пикнометра либо ареометра. Ареометр наружно схож на обыкновенный термометр, внизу его размещен резервуар, заполненный дробью либо ртутью, в средней части – термометр, а в верхней части – шкала плотностей. Всякое деление соответствует относительной плотности жидкости. Там же указывается температура, при которой надобно измерять плотность. Как водится, измерения проводят при температуре 20оС. Сухой ареометр погружают в сосуд с жидкостью, пока не станет ясно, что он там вольно плавает. Подержите ареометр в жидкости 4 минуты и посмотрите, на ярусе какого деления он погружен в воду.

2. Измерьте высоту яруса жидкости в сосуде любым доступным методом. Это может быть линейка, штанген-циркуль, мерный циркуль и т.д. Нулевая отметка линейки должна находиться на нижнем ярусе жидкости, верхняя – на ярусе поверхности жидкости.

3. Вычислите давление на дно сосуда. Согласно закону Паскаля, оно не зависит от формы самого сосуда. Давление определяется только плотностью жидкости и высотой ее яруса, и рассчитывается по формуле P= h*?, где P – давление , h – высота яруса жидкости, ? – плотность жидкости. Приведите единицы измерения в вид, комфортный для последующего использования.

Видео по теме

Обратите внимание!
Класснее пользоваться комплектом ареометров, в тот, что входят приборы для измерения плотности жидкостей легче либо тяжелее воды. Существуют особые ареометры для измерения плотности спирта, молока и некоторых других жидкостей. Дабы измерить плотность жидкости ареометром, сосуд должен быть не менее 0,5 л. Если рассматривать жидкость как несжимаемую, то давление на все поверхности сосуда будет равномерным.

Полезный совет
Измерение плотность с подмогой пикнометра больше точное, правда и больше трудоемкое. Вам потребуются еще аналитические весы, дистиллированная вода, спирт, эфир и термостат. Такое измерение проводят в основном в намеренно оснащенных лабораториях. Взвесьте прибор на аналитических весах, которые дают высокую точность (до 0,0002 г). Заполните его дистиллированной водой, чуть выше расположения метки, и закройте пробкой. Разместите пикнометр в термостат и вынесете 20 минут при температуре 20оС. Уменьшите число воды до метки. Излишки уберите пипеткой и вновь закройте пикнометр. Разместите его в термостат на 10 минут, проверьте, совпадает ли ярус жидкости с меткой. Протрите пикнометр снаружи мягкой салфеткой и оставьте на 10 минут за стеклом коробки аналитических весов, позже чего вновь взвесьте. Узнав таким образом точную массу прибора, вылейте из него воду, сполосните спиртом и эфиром, продуйте. Заполните пикнометр жидкостью, плотность которой надобно узнать, и действуйте верно так же, как и с дистиллированной водой. Если нет особого прибора, дозволено измерить плотность с подмогой весов и мерной мензурки. Поставьте на весы мензурку и уравновесьте чашечки. Запишите массу. Наполните мензурку исследуемой жидкостью на заданную единицу объема и вновь взвесьте. Разница в массах является массой жидкости в заданном объеме. Поделив массу на объем, вы получите плотность.

Вычислить среднюю скорость несложно. Для этого нужно легко поделить длину пройденного пути на время. Впрочем на практике и при решении задач изредка появляются добавочные вопросы. Скажем, что считать пройденным путем? Показания спидометра либо настоящее смещение объекта? Что считать временем в пути, если объект половину времени никуда не двигался? Без контроля всех этих нюансов нереально положительно вычислить среднюю скорость.

Вам понадобится

  • калькулятор либо компьютер, спидометр

Инструкция

1. Для вычисления средней скорости равномерного движения объекта, легко измерьте его скорость в всякий точке пути. Потому что скорость движения непрерывна, то она и будет средней скоростью.Еще проще эта связанность выглядит в виде формулы:Vср=V, гдеVср – средняя скорость, аV – скорость равномерного движения.

2. Дабы вычислить среднюю скорость равноускоренного движения, обнаружьте среднее арифметическое исходной и финальной скорости. Для этого обнаружьте сумму этих скоростей и поделите на два. Полученное число и будет средней скоростью объекта.Нагляднее это выглядит в виде дальнейшей формулы:Vср = (Vкон + Vнач) / 2, гдеVср – средняя скорость,Vкон – финальная скорость,Vнач – исходная скорость.

3. Если задана величина убыстрения и исходная скорость, а финальная скорость неведома, то преобразуйте вышеприведенную формулу дальнейшим образом:Потому что при равноускоренном движении Vкон = Vнач + a*t, где а – убыстрение объекта, а t – время, то имеем:Vср = (Vкон + Vнач) / 2 = (Vнач + a*t + Vнач) / 2 = Vнач + a*t / 2

4. Если же, напротив, знамениты финальная скорость и убыстрение тела, но исходная скорость не задана, то преобразуйте формулу к дальнейшему виду:Vср = (Vкон + Vнач) / 2 = (Vкон + Vкон – a*t) / 2 = Vкон – a*t / 2

5. Если заданы длина пройденного телом пути, а также время, которое потребовалось на прохождение этого расстояния, то примитивно поделите данный путь на затраченное время. То есть используйте всеобщую формулу:Vср = S / t, где S – всеобщая длина пройденного пути.Время, затраченное на прохождение пути учитывается самостоятельно от того, двигался объект постоянно либо останавливался.

6. Если в условиях задачи намеренно не указано, какую именно среднюю скорость нужно вычислить, то подразумевается средняя путевая скорость.Дабы вычислить среднюю путевую скорость, берется всеобщая длина пройденного пути, т.е. его траектория. Если во время движения объект возвращался в пройденные точки пути, то это расстояние также учитывается. Так, скажем, для автомобиля длина пути, нужная для вычисления средней путевой скорости, будет соответствовать показаниям спидометра (разности показаний).

7. Если нужно вычислить среднюю скорость перемещения (смещения), то под пройденным путем подразумевается то расстояние, на которое тело подлинно переместилось.Потому что перемещение неизменно происходит в определенном направлении, то смещение (S) величина векторная, т.е. характеризуется как направлением, так и безусловной величиной. Следственно, и значение средней скорости смещения будет величиной векторной. В связи с этим, при решении сходственных задач неукоснительно узнайте: какую именно скорость требуется вычислить. Среднюю путевую скорость, числовое значение средней скорости смещения либо вектор средней скорости смещения.В частности, если тело в процессе движения возвращается в начальную точку, то считается, что его средняя скорость смещения равна нулю.

Безупречным считают газ, в котором взаимодействие между молекулами пренебрежимо немного. Помимо давления, состояние газа характеризуется температурой и объемом. Соотношения между этими параметрами отображены в газовых законах.

Инструкция

1. Давление газа прямо пропорционально его температуре, числу вещества, и обратно пропорционально объему сосуда, занимаемого газом. Показателем пропорциональности служит универсальная газовая непрерывная R, примерно равная 8,314. Она измеряется в джоулях, поделенных на моль и на кельвин.

2. Это расположение формирует математическую связанность P=?RT/V, где? – число вещества (моль), R=8,314 – универсальная газовая непрерывная (Дж/моль К), T – температура газа, V – объем. Давление выражается в паскалях. Его дозволено выразить и в атмосферах, при этом 1 атм = 101,325 кПа.

3. Рассмотренная связанность – следствие из уравнения Менделеева-Клапейрона PV=(m/M) RT. Тут m – масса газа (г), M – его молярная масса (г/моль), а дробь m/M дает в результате число вещества?, либо число молей. Уравнение Менделеева-Клапейрона объективно для всех газов, которые возможно считать совершенными. Это капитальный физико-химический газовый закон.

4. Отслеживая за поведением совершенного газа, говорят о так называемых типичных условиях – условиях окружающей среды, с которыми особенно зачастую доводится иметь дело в реальности. Так, типичные данные (н.у.) полагают температуру в 0 градусов Цельсия (либо 273,15 градусов по шкале Кельвина) и давление в 101,325 кПа (1 атм). Обнаружено значение, чему равен объем одного моля безукоризненного газа при таких условиях: Vm=22,413 л/моль. Данный объем назван молярным. Молярный объем – одна из основных химических констант, применяемых в решении задач.

5. Значимо понимать, что при непрерывном давлении и температуре объем газа также не меняется. Данный восхитительный постулат сформулирован в законе Авогадро, тот, что заявляет, что объем газа прямо пропорционален числу молей.

Видео по теме

Полезный совет
Используйте барометр-анероид либо ртутный барометр для больше точного значения, если вам нужно вычислить давление газа в ходе эксперимента либо лабораторной работы. Для измерения давления газа в сосуде либо баллоне пользуйтесь обыкновенным либо электронным манометром.

Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном .

Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:

  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.

Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.

Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

Существует еще одно состояние вещества – плазма. Плазма - частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Модель идеального газа. Связь между давлением и средней кинетической энергией.

Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

Идеальный газ это газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

Свойства идеального газа:

  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V , давление p и температура T .

Объем газа обозначается V . Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м 3 .

Давление физическая величина, равная отношению силы F , действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента .

p = F / S Единица давления в СИ паскаль [Па]

До настоящего времени употребляются внесистемные единицы давления:

техническая атмосфера 1 ат = 9,81-104 Па;

физическая атмосфера 1 атм = 1,013-105 Па;

миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

1 атм = = 760 мм рт. ст. = 1013 гПа.

Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

Используя модель идеального газа, можно вычислить давление газа на стенку сосуда .

В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υ x скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υ y скорости, параллельная стенке, остается неизменной.

Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

Жидкостные манометры:

  1. открытый – для измерения небольших давлений выше атмосферного
  2. закрытый - для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

Металлический манометр – для измерения больших давлений.

Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

Основное уравнение молекулярно-кинетической теории идеального газа.

Основное уравнение МКТ : давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул

p = 1/3· m n·v 2

m 0 - масса одной молекулы газа;

n = N/V – число молекул в единице объема, или концентрация молекул;

v 2 - средняя квадратичная скорость движения молекул.

Так как средняя кинетическая энергия поступательного движения молекул E = m 0 *v 2 /2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m 0 · v 2)/2 = 2/3·E·n

p = 2/3·E·n

Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

Так как m 0 ·n = m 0 ·N/V = m/V = ρ, где ρ – плотность газа, то имеем p = 1/3· ρ· v 2

Объединенный газовый закон.

Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

Важнейшими термодинамическими параметрами газа являются его объем V , давление р и температура Т.

Всякое изменение состояния газа называется термодинамическим процессом.

В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом .

Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

p = nkT

Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V , давлением p , температурой T и количеством вещества ν. Для этого нужно использовать равенства

где n – концентрация молекул, N – общее число молекул, V – объем газа

Тогда получим или

Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона .

Уравнение Клайперона можно записать в другой форме.

p = nkT,

учитывая, что

Здесь N – число молекул в сосуде, ν – количество вещества, N А – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Произведение постоянной Авогадро N А на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R .

Ее численное значение в СИ R = 8,31 Дж/моль·К

Соотношение

называется уравнением состояния идеального газа .

В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева .`

Для одного моля любого газа это соотношение принимает вид: pV=RT

Установим физический смысл молярной газовой постоянной . Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

Запишем уравнение pV =RT для нагретого газа: p (V + ΔV) = R (T + 1)

и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R

ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

pS = F – сила давления.

Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

Таким образом, R = A .

Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.