От чего зависит фокус линзы. Собирающие и рассеивающие линзы

Изображения:

1. Действительные – те изображения, которые мы получаем в результате пересечения лучей, прошедших через линзу. Они получаются в собирающей линзе;

2. Мнимые – изображения, образуемые расходящимися пучками, лучи которых на самом деле не пересекаются между собой, а пересекаются их продолжения, проведенные в обратном направлении.

Собирающая линза может создавать как действительное, так и мнимое изображение.

Рассеивающая линза создает только мнимое изображение.

Собирающая линза

Чтобы построить изображение предмета, нужно пустить два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

В результате построения получается уменьшенное, перевернутое, действительное изображение (см. Рис. 1).

Рис. 1. Если предмет располагается за двойным фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет через линзу, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

Точно так же строится изображение нижней точки предмета.

В результате построения получается изображение, высота которого совпадает с высотой предмета. Изображение является перевернутым и действительным (Рис. 2).

Рис. 2. Если предмет располагается в точке двойного фокуса

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы. Через линзу он проходит, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

Точно так же строится изображение нижней точки предмета.

В результате построения получается увеличенное, перевернутое, действительное изображение (см. Рис. 3).

Рис. 3. Если предмет располагается в пространстве между фокусом и двойным фокусом

Так устроен проекционный аппарат. Кадр киноленты располагается вблизи фокуса, тем самым получается большое увеличение.

Вывод: по мере приближения предмета к линзе изменяется размер изображения.

Когда предмет располагается далеко от линзы – изображение уменьшенное. При приближении предмета изображение увеличивается. Максимальным изображение будет тогда, когда предмет находится вблизи фокуса линзы.

Предмет не создаст никакого изображения (изображение на бесконечности). Так как лучи, попадая на линзу, преломляются и идут параллельно друг другу (см. Рис. 4).

Рис. 4. Если предмет находится в фокальной плоскости

5. Если предмет располагается между линзой и фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломится и пройдет через точку фокуса. Проходя через линзу, лучи расходятся. Поэтому изображение будет сформировано с той же стороны, что и сам предмет, на пересечении не самих линий, а их продолжений.

В результате построения получается увеличенное, прямое, мнимое изображение (см. Рис. 5).

Рис. 5. Если предмет располагается между линзой и фокусом

Таким образом устроен микроскоп.

Вывод(см. Рис. 6):

Рис. 6. Вывод

На основе таблицы можно построить графики зависимости изображения от расположения предмета (см. Рис. 7).

Рис. 7. График зависимости изображения от расположения предмета

График увеличения (см. Рис. 8).

Рис. 8. График увеличения

Построение изображения светящейся точки, которая располагается на главной оптической оси.

Чтобы построить изображение точки, нужно взять луч и направить его произвольно на линзу. Построить побочную оптическую ось параллельно лучу, проходящую через оптический центр. В том месте, где произойдет пересечение фокальной плоскости и побочной оптической оси, и будет второй фокус. В эту точку пойдет преломленный луч после линзы. На пересечении луча с главной оптической осью получается изображение светящейся точки (см. Рис. 9).

Рис. 9. График изображения светящейся тчки

Рассеивающая линза

Предмет располагается перед рассеивающей линзой.

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется таким образом, что продолжение этого луча пойдет в фокус. А второй луч, который проходит через оптический центр, пересекает продолжение первого луча в точке А’, – это и будет изображение верхней точки предмета.

Таким же образом строится изображение нижней точки предмета.

В результате получается прямое, уменьшенное, мнимое изображение (см. Рис. 10).

Рис. 10. График рассеивающей линзы

При перемещении предмета относительно рассеивающей линзы всегда получается прямое, уменьшенное, мнимое изображение.

Наиболее важное применение преломления света – это использование линз, которые обычно делают из стекла. На рисунке вы видите поперечные разрезы различных линз. Линзой называют прозрачное тело, ограниченное сферическими или плоско-сферическими поверхностями. Всякая линза, которая в средней части тоньше, чем по краям, в вакууме или газе будет рассеивающей линзой. И наоборот: всякая линза, которая в средней части толще, чем по краям, будет собирающей линзой.

Для пояснений обратимся к чертежам. Слева показано, что лучи, идущие параллельно главной оптической оси собирающей линзы, после неё «сходятся», проходя через точку F – действительный главный фокус собирающей линзы. Справа показано прохождение лучей света через рассеивающую линзу параллельно её главной оптической оси. Лучи после линзы «расходятся» и кажутся исходящими из точки F’, называемой мнимым главным фокусом рассеивающей линзы. Он не действительный, а мнимый потому, что через него лучи света не проходят: там пересекаются лишь их воображаемые (мнимые) продолжения.

В школьной физике изучаются только так называемые тонкие линзы, которые вне зависимости от их симметричности «в разрезе» всегда имеют два главных фокуса, расположенные на равных расстояних от линзы. Если лучи направлять под углом к главной оптической оси, то мы обнаружим множество других фокусов у собирающей и/или рассеивающей линзы. Эти, побочные фокусы , будут находиться в стороне от главной оптической оси, но по-прежнему попарно на равных расстояниях от линзы.

Линзой можно не только собирать или рассеивать лучи. При помощи линз можно получать увеличенные и уменьшенные изображения предметов. Например, благодаря собирающей линзе на экране получается увеличенное и перевёрнутое изображение золотой статуэтки (см. рисунок).

Опыты показывают: отчётливое изображение возникает, если предмет, линза и экран расположены на определённых расстояниях друг от друга. В зависимости от них изображения могут быть перевёрнутыми или прямыми, увеличенными или уменьшенными, действительными или мнимыми.

Ситуация, когда расстояние d от предмета до линзы больше её фокусного расстояния F, но меньше двойного фокусного расстояния 2F, описана во второй строке таблицы. Именно это мы и наблюдаем со статуэткой: её изображение действительное, перевёрнутое и увеличенное.

Если изображение действительное, его можно спроецировать на экран. При этом изображение будет видно из любого места комнаты, из которого виден экран. Если изображение мнимое, то его нельзя спроецировать на экран, а можно лишь увидеть глазом, располагая его определённым образом по отношению к линзе (нужно смотреть «в неё»).

Опыты показывают, что рассеивающие линзы дают уменьшенное прямое мнимое изображение при любом расстоянии от предмета до линзы.

Разработки уроков (конспекты уроков)

Линия УМК А. В. Перышкина. Физика (7-9)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Цели урока:

  • выяснить что такое линза, провести их классификацию, ввести понятия: фокус, фокусное расстояние, оптическая сила, линейное увеличение;
  • продолжить развитие умений решать задачи по теме.

Ход урока

Пою перед тобой в восторге похвалу
Не камням дорогим, ни злату, но СТЕКЛУ.

М.В. Ломоносов

В рамках данной темы вспомним, что такое линза; рассмотрим общие принципы построения изображений в тонкой линзе, а также выведем формулу для тонкой линзы.

Ранее познакомились с преломлением света, а также вывели закон преломления света.

Проверка домашнего задания

1) опрос § 65

2) фронтальный опрос (см. презентацию)

1.На каком из рисунков правильно показан ход луча, проходящего через стеклянную пластину, находящуюся в воздухе?

2. На каком из приведённых ниже рисунков правильно построено изображение в вертикально расположенном плоском зеркале?


3.Луч света переходит из стекла в воздух, преломляясь на границе раздела двух сред. Какое из направлений 1–4 соответствует преломленному лучу?


4. Котёнок бежит к плоскому зеркалу со скоростью V = 0,3 м/с. Само зеркало движется в сторону от котёнка со скоростью u = 0,05 м/с. С какой скоростью котёнок приближается к своему изображению в зеркале?


Изучение нового материала

Вообще, слово линза - это слово латинское, которое переводится как чечевица. Чечевица - это растение, плоды которого очень похожи на горох, но горошины не круглые, а имеют вид пузатых лепешек. Поэтому все круглые стекла, имеющие такую форму, и стали называть линзами.


Первое упоминание о линзах можно найти в древнегреческой пьесе Аристофана «Облака» (424 год до нашей эры), где с помощью выпуклого стекла и солнечного света добывали огонь. А возраст самой древней из обнаруженных линз более 3000 лет. Это так называемая линза Нимруда . Она была найдена при раскопках одной из древних столиц Ассирии в Нимруде Остином Генри Лэйардом в 1853 году. Линза имеет форму близкую к овалу, грубо шлифована, одна из сторон выпуклая, а другая плоская. В настоящее время она храниться в британском музее - главном историко-археологическом музее Великобритании.

Линза Нимруда

Итак, в современном понимании, линзы - это прозрачные тела, ограниченные двумя сферическими поверхностями. (записать в тетрадь) Чаще всего используются сферические линзы, у которых ограничивающими поверхностями выступают сферы или сфера и плоскость. В зависимости от взаимного размещения сферических поверхностей или сферы и плоскости, различают выпуклые и вогнутые линзы . (Дети рассматривают линзы из набора «Оптика»)

В свою очередь выпуклые линзы делятся на три вида - плоско выпуклые, двояковыпуклые и вогнуто-выпуклая; а вогнутые линзы подразделяются на плосковогнутые, двояковогнутые и выпукло-вогнутые.


(записать)

Любую выпуклую линзы можно представить в виде совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к середине линзы, а вогнутую - как совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к краям.

Известно, что если призма будет сделана из материала, оптически более плотного, чем окружающая среда, то она будет отклонять луч к своему основанию. Поэтому параллельный пучок света после преломления в выпуклой линзе станет сходящимся (такие называются собирающими ), а в вогнутой линзе наоборот, параллельный пучок света после преломления станет расходящимся (поэтому такие линзы называются рассеивающими ).


Для простоты и удобства, будем рассматривать линзы, толщина которых пренебрежимо мала, по сравнению с радиусами сферических поверхностей. Такие линзы называют тонкими линзами . И в дальнейшем, когда будем говорить о линзе, всегда будем понимать именно тонкую линзу.

Для условного обозначения тонких линз применяют следующий прием: если линза собирающая , то ее обозначают прямой со стрелочками на концах, направленными от центра линзы, а если линза рассеивающая , то стрелочки направлены к центру линзы.

Условное обозначение собирающей линзы


Условное обозначение рассеивающей линзы


(записать)

Оптический центр линзы - это точка, пройдя через которую лучи не испытывают преломления.

Любая прямая, проходящая через оптический центр линзы, называется оптической осью.

Оптическую же ось, которая проходит через центры сферических поверхностей, которые ограничивают линзу, называют главной оптической осью.

Точка, в которой пересекаются лучи, падающие на линзу параллельно ее главной оптической оси (или их продолжения), называется главным фокусом линзы . Следует помнить, что у любой линзы существует два главных фокуса - передний и задний, т.к. она преломляет свет, падающий на нее с двух сторон. И оба этих фокуса расположены симметрично относительно оптического центра линзы.

Собирающая линза


(зарисовать)

Рассеивающая линза


(зарисовать)

Расстояние от оптического центра линзы до ее главного фокуса, называется фокусным расстоянием .

Фокальная плоскость - это плоскость, перпендикулярная главной оптической оси линзы, проходящая через ее главный фокус.
Величину, равную обратному фокусному расстоянию линзы, выраженному в метрах, называют оптической силой линзы. Она обозначается большой латинской буквой D и измеряется в диоптриях (сокращенно дптр).


(Записать)


Впервые, полученную нами формулу тонкой линзы, вывел Иоганн Кеплер в 1604 году. Он изучал преломления света при малых углах падения в линзах различной конфигурации.

Линейное увеличение линзы - это отношение линейного размера изображения к линейному размеру предмета. Обозначается оно большой греческой буквой G.


Решение задач (у доски) :

  • Стр 165 упр 33 (1,2)
  • Свеча находится на расстоянии 8 см от собирающей линзы, оптическая сила которой равна 10 дптр. На каком расстоянии от линзы получится изображение и каким оно будет?
  • На каком расстоянии от линзы с фокусным расстоянием 12см надо поместить предмет, чтобы его действительное изображение было втрое больше самого предмета?

Дома: §§ 66 №№1584, 1612-1615 (сборник Лукашика)

Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.

Правила хода лучей в тонких линзах, сформулированные в предыдущей теме , приводят нас к важнейшему утверждению.

Теорема об изображении. Если перед линзой находится светящаяся точка , то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке .

Точка называется изображением точки .

Если в точке пересекаются сами преломлённые лучи, то изображение называется действительным . Оно может быть получено на экране, так как в точке концентрируется энергия световых лучей.

Если же в точке пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга - достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.

Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.

Собирающая линза: действительное изображение точки.

Сперва рассмотрим собирающую линзу. Пусть - расстояние от точки до линзы, - фокусное расстояние линзы. Имеются два принципиально разных случая: и (а также промежуточный случай ). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.

Первый случай: . Точечный источник света расположен дальше от линзы, чем левая фокальная плоскость (рис. 1 ).

Луч , идущий через оптический центр, не преломляется. Мы возьмём произвольный луч , построим точку , в которой преломлённый луч пересекается с лучом , а затем покажем, что положение точки не зависит от выбора луча (иными словами, точка является одной и той же для всевозможных лучей ). Тем самым окажется, что все лучи, исходящие из точки , после преломления в линзе пересекаются в точке и теорема об изображении будет доказана для рассматриваемого случая .

Точку мы найдём, построив дальнейший ход луча . Делать это мы умеем: параллельно лучу проводим побочную оптическую ось до пересечения с фокальной плоскостью в побочном фокусе , после чего проводим преломлённый луч до пересечения с лучом в точке .

Теперь будем искать расстояние от точки до линзы. Мы покажем, что это расстояние выражается только через и , т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча .

Опустим перпендикуляры и на главную оптическую ось. Проведём также параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:

, (1)
, (2)
. (3)

В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).

(4)

Но , так что соотношение (4) переписывается в виде:

. (5)

Отсюда находим искомое расстояние от точки до линзы:

. (6)

Как видим, оно и в самом деле не зависит от выбора луча . Следовательно, любой луч после преломления в линзе пройдёт через построенную нами точку , и эта точка будет действительным изображением источника

Теорема об изображении в данном случае доказана.

Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника пересекаются после линзы в одной точке - его изображении - то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?

Если источник не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:

Луч, идущий через оптический центр линзы - он не преломляется;
- луч, параллельный главной оптической оси - после преломления он идёт через фокус.

Построение изображения с помощью этих лучей показано на рис. 2 .

Если же точка лежит на главной оптической оси, то удобный луч остаётся лишь один - идущий вдоль главной оптической оси. В качестве второго луча приходится брать "неудобный" (рис. 3 ).

Посмотрим ещё раз на выражение ( 5 ). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:

Теперь разделим обе части этого равенства на a :

(7)

Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для . В дальнейшем мы выведем модификации этой формулы для остальных случаев.

Теперь вернёмся к соотношению (6) . Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что не зависит от расстояния (рис. 1, 2 ) между источником и главной оптической осью!

Это означает, что какую бы точку отрезка мы ни взяли, её изображение будет находиться на одном и том же расстоянии от линзы. Оно будет лежать на отрезке - а именно, на пересечении отрезка с лучом , который пойдёт сквозь линзу без преломления. В частности, изображением точки будет точка .

Тем самым мы установили важный факт: изображением отрезка лужит отрезок . Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить - прямым или перевёрнутым получается изображение.

Собирающая линза: действительное изображение предмета.

Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая . Здесь можно выделить три характерных ситуации.

1. . Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4 ; двойной фокус обозначен ). Из формулы линзы следует, что в этом случае будет (почему?).

Такая ситуация реализуется, например, в диапроекторах и киноаппаратах - эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым - чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г - (это заглавная греческая "гамма"):

Из подобия треугольников и получим:

. (8)

Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.

2. . В этом случае из формулы (6) находим, что и . Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5 ).

Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов - словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.

Рассмотрение первого случая нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.

Собирающая линза: мнимое изображение точки.

Второй случай: . Точечный источник света расположен между линзой и фокальной плоскостью (рис. 7 ).

Наряду с лучом , идущим без преломления, мы снова рассматриваем произвольный луч . Однако теперь на выходе из линзы получаются два расходящихся луча и . Наш глаз продолжит эти лучи до пересечения в точке .

Теорема об изображении утверждает, что точка будет одной и той же для всех лучей , исходящих из точки . Мы опять докажем это с помощью трёх пар подобных треугольников:

Снова обозначая через расстояние от до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):

. (9)

. (10)

Величина не зависит от луча , что и доказывает теорему об изображении для нашего случая . Итак, - мнимое изображение источника . Если точка не лежит на главной оптической оси, то для построения изображения удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8 ).

Ну а если точка лежит на главной оптической оси, то деваться некуда - придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9 ).

Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая . Сначала переписываем это соотношение в виде:

а затем делим обе части полученного равенства на a :

. (11)

Сравнивая (7) и (11) , мы видим небольшую разницу: перед слагаемым стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.

Величина , вычисляемая по формуле (10) , не зависит также от расстояния между точкой и главной оптической осью. Как и выше (вспомните рассуждение с точкой ), это означает, что изображением отрезка на рис. 9 будет отрезок .

Собирающая линза: мнимое изображение предмета.

Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10 ). Оно получается мнимым, прямым и увеличенным.

Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло - лупу. Случай полностью разобран. Как видите, он качественно отличается от нашего первого случая . Это не удивительно - ведь между ними лежит промежуточный "катастрофический" случай .

Собирающая линза: предмет в фокальной плоскости.

Промежуточный случай:. Источник света расположен в фокальной плоскости линзы (рис. 11 ).

Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости - а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника , расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.


Рис. 11. a=f: изображение отсутствует

Где же изображение точки ? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае - изображение находится на бесконечности.

Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).

Итак, мы полностью рассмотрели построение изображений в собирающей линзе.

Рассеивающая линза: мнимое изображение точки.

К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.

Снова берём луч и произвольный луч (рис. 12 ). На выходе из линзы имеем два расходящихся луча и , которые наш глаз достраивает до пересечения в точке .

Нам снова предстоит доказать теорему об изображении - о том, что точка будет одной и той же для всех лучей . Действуем с помощью всё тех же трёх пар подобных треугольников:

(12)

. (13)

Величина b не зависит от луча span
, поэтому продолжения всех преломлённых лучей span
пересекутся в точке - мнимом изображении точки . Теорема об изображении тем самым полностью доказана.

Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10) . В случае их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации и .

А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника - случай тут, как мы и сказали выше, имеется только один.

Если точка не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой - параллельно главной оптической оси (рис. 13 ).

Если же точка лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14 ).

Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:

а потом разделим обе части полученного равенства на a :

(14)

Так выглядит формула линзы для рассеивающей линзы.

Три формулы линзы (7) , (11) и (14) можно записать единообразно:

если соблюдать следующую договорённость о знаках:

Для мнимого изображения величина считается отрицательной;
- для рассеивающей линзы величина считается отрицательной.

Это очень удобно и охватывает все рассмотренные случаи.

Рассеивающая линза: мнимое изображение предмета.

Величина , вычисляемая по формуле (13) , опять-таки не зависит от расстояния между точкой и главной оптической осью. Это снова даёт нам возможность построить изображение предмета , которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15 ).


Рис. 15. Изображение мнимое, прямое, уменьшенное

Линзы, как правило, имеют сферическую или близкую к сферической поверхность. Они могут быть вогнутыми, выпуклыми или плоскими (радиус равен бесконечности). Обладают двумя поверхностями, через которые проходит свет. Они могут сочетаться по-разному, образуя различные виды линз (фото приведено далее в статье):

  • Если обе поверхности выпуклые (изогнуты наружу), центральная часть толще, чем по краям.
  • Линза с выпуклой и вогнутой сферами называется мениском.
  • Линза с одной плоской поверхностью носит название плоско-вогнутой или плоско-выпуклой, в зависимости от характера другой сферы.

Как определить вид линзы? Остановимся на этом подробнее.

Собирающие линзы: виды линз

Независимо от сочетания поверхностей, если их толщина в центральной части больше, чем по краям, они называются собирающими. Имеют положительное фокусное расстояние. Различают следующие виды собирающих линз:

  • плоско-выпуклые,
  • двояковыпуклые,
  • вогнуто-выпуклые (мениск).

Их еще называют «положительными».

Рассеивающие линзы: виды линз

Если их толщина в центре тоньше, чем по краям, то они носят название рассеивающих. Имеют отрицательное фокусное расстояние. Существуют такие виды рассеивающих линз:

  • плоско-вогнутые,
  • двояковогнутые,
  • выпукло-вогнутые (мениск).

Их еще называют «отрицательными».

Базовые понятия

Лучи от точечного источника расходятся из одной точки. Их называют пучком. Когда пучок входит в линзу, каждый луч преломляется, изменяя свое направление. По этой причине пучок может выйти из линзы в большей или меньшей степени расходящимся.

Некоторые виды оптических линз изменяют направление лучей настолько, что они сходятся в одной точке. Если источник света расположен, по меньшей мере, на фокусном расстоянии, то пучок сходится в точке, удаленной, по крайней мере, на ту же дистанцию.

Действительные и мнимые изображения

Точечный источник света называется действительным объектом, а точка сходимости пучка лучей, выходящего из линзы, является его действительным изображением.

Важное значение имеет массив точечных источников, распределенных на, как правило, плоской поверхности. Примером может служить рисунок на матовом стекле, подсвеченный сзади. Другим примером является диафильм, освещенный сзади так, чтобы свет от него проходил через линзу, многократно увеличивающую изображение на плоском экране.

В этих случаях говорят о плоскости. Точки на плоскости изображения 1:1 соответствуют точкам на плоскости объекта. То же относится и к геометрическим фигурам, хотя полученная картинка может быть перевернутой по отношению к объекту сверху вниз или слева направо.

Схождение лучей в одной точке создает действительное изображение, а расхождение - мнимое. Когда оно четко очерчено на экране - оно действительное. Если же изображение можно наблюдать, только посмотрев через линзу в сторону источника света, то оно называется мнимым. Отражение в зеркале - мнимое. Картину, которую можно увидеть через телескоп - тоже. Но проекция объектива камеры на пленку дает действительное изображение.

Фокусное расстояние

Фокус линзы можно найти, пропустив через нее пучок параллельных лучей. Точка, в которой они сойдутся, и будет ее фокусом F. Расстояние от фокальной точки до объектива называют его фокусным расстоянием f. Параллельные лучи можно пропустить и с другой стороны и таким образом найти F с двух сторон. Каждая линза обладает двумя F и двумя f. Если она относительно тонка по сравнению с ее фокусными расстояниями, то последние приблизительно равны.

Дивергенция и конвергенция

Положительным фокусным расстоянием характеризуются собирающие линзы. Виды линз данного типа (плоско-выпуклые, двояковыпуклые, мениск) сводят лучи, выходящие из них, больше, чем они были сведены до этого. Собирающие объективы могут формировать как действительное, так и мнимое изображение. Первое формируется только в случае, если расстояние от линзы до объекта превышает фокусное.

Отрицательным фокусным расстоянием характеризуются рассеивающие линзы. Виды линз этого типа (плоско-вогнутые, двояковогнутые, мениск) разводят лучи больше, чем они были разведены до попадания на их поверхность. Рассеивающие линзы создают мнимое изображение. И только когда сходимость падающих лучей значительна (они сходятся где-то между линзой и фокальной точкой на противоположной стороне), образованные лучи все еще могут сходиться, образуя действительное изображение.

Важные различия

Следует быть очень внимательными, чтобы отличать схождение или расхождение лучей от конвергенции или дивергенции линзы. Виды линз и пучков света могут не совпадать. Лучи, связанные с объектом или точкой изображения, называются расходящимися, если они «разбегаются», и сходящимся, если они «собираются» вместе. В любой коаксиальной оптической системе оптическая ось представляет собой путь лучей. Луч вдоль этой оси проходит без какого-либо изменения направления движения из-за преломления. Это, по сути, хорошее определение оптической оси.

Луч, который с расстоянием отдаляется от оптической оси, называется расходящимся. А тот, который к ней становится ближе, носит название сходящегося. Лучи, параллельные оптической оси, имеют нулевое схождение или расхождение. Таким образом, когда говорят о схождении или расхождении одного луча, его соотносят с оптической осью.

Некоторые виды которых такова, что луч отклоняется в большей степени к оптической оси, являются собирающими. В них сходящиеся лучи сближаются еще больше, а расходящиеся отдаляются меньше. Они даже в состоянии, если их сила достаточна для этого, сделать пучок параллельным или даже сходящимся. Аналогично рассеивающая линза может развести расходящиеся лучи еще больше, а сходящиеся - сделать параллельными или расходящимися.

Увеличительные стекла

Линза с двумя выпуклыми поверхностями толще в центре, чем по краям, и может использоваться в качестве простого увеличительного стекла или лупы. При этом наблюдатель смотрите через нее на мнимое, увеличенное изображение. Объектив камеры, однако, формирует на пленке или сенсоре действительное, как правило, уменьшенное в размерах по сравнению с объектом.

Очки

Способность линзы изменять сходимость света называется ее силой. Выражается она в диоптриях D = 1 / f, где f - фокусное расстояние в метрах.

У линзы с силой 5 диоптрий f = 20 см. Именно диоптрии указывает окулист, выписывая рецепт очков. Скажем, он записал 5,2 диоптрий. В мастерской возьмут готовую заготовку в 5 диоптрий, полученную на заводе-изготовителе, и отшлифуют немного одну поверхность, чтобы добавить 0,2 диоптрии. Принцип состоит в том, что для тонких линз, в которых две сферы расположены близко друг к другу, соблюдается правило, согласно которому общая их сила равна сумме диоптрий каждой: D = D 1 + D 2 .

Труба Галилея

Во времена Галилея (начало XVII века), очки в Европе были широко доступны. Они, как правило, изготавливались в Голландии и распространялись уличными торговцами. Галилео слышал, что кто-то в Нидерландах поместил два вида линз в трубку, чтобы удаленные объекты казались больше. Он использовал длиннофокусный собирающий объектив в одном конце трубки, и короткофокусный рассеивающий окуляр на другом конце. Если фокусное расстояние объектива равно f o и окуляра f e , то дистанция между ними должна быть f o -f e , а сила (угловое увеличение) f o /f e . Такая схема называется трубой Галилея.

Телескоп обладает увеличением 5 или 6 крат, сравнимым с современными ручными биноклями. Этого достаточно для многих захватывающих Можно без проблем увидеть лунные кратеры, четыре луны Юпитера, фазы Венеры, туманности и звездные скопления, а также слабые звезды в Млечном Пути.

Телескоп Кеплера

Кеплер услышал обо всем этом (он и Галилей вели переписку) и построил еще один вид телескопа с двумя собирающими линзами. Та, у которой большое фокусное расстояние, является объективом, а та, у которой оно меньше - окуляром. Расстояние между ними равно f o + f e , а угловое увеличение составляет f o /f e . Этот кеплеровский (или астрономический) телескоп создает перевернутое изображение, но для звезд или луны это не имеет значения. Данная схема обеспечила более равномерное освещение поля зрения, чем телескоп Галилея, и была более удобна в использовании, так как позволяла держать глаза в фиксированном положении и видеть все поле зрения от края до края. Устройство позволяло достичь более высокого увеличения, чем труба Галилея, без серьезного ухудшения качества.

Оба телескопа страдают от сферической аберрации, в результате чего изображения не полностью сфокусированы, и хроматической аберрации, создающей цветные ореолы. Кеплер (и Ньютон) считал, что эти дефекты невозможно преодолеть. Они не предполагали, что возможны ахроматические виды которых станет известна лишь в XIX веке.

Зеркальные телескопы

Грегори предположил, что в качестве объективов телескопов можно использовать зеркала, так как в них отсутствует цветная окантовка. Ньютон воспользовался этой идеей и создал ньютоновскую форму телескопа из вогнутого посеребренного зеркала и положительного окуляра. Он передал образец Королевскому обществу, где тот находится и по сей день.

Однолинзовый телескоп может проецировать изображение на экран или фотопленку. Для должного увеличения требуется положительная линза с большим фокусным расстоянием, скажем, 0,5 м, 1 м или много метров. Такая компоновка часто используется в астрономической фотографии. Людям, незнакомым с оптикой, может показаться парадоксальной ситуация, когда более слабая длиннофокусная линза дает большее увеличение.

Сферы

Высказывались предположения, что древние культуры, возможно, имели телескопы, потому что они делали маленькие стеклянные шарики. Проблема состоит в том, что неизвестно, для чего они использовались, и они, конечно, не могли бы лечь в основу хорошего телескопа. Шарики могли применяться для увеличения мелких объектов, но качество при этом вряд ли было удовлетворительным.

Фокусное расстояние идеальной стеклянной сферы очень короткое и формирует действительное изображение очень близко от сферы. Кроме того, аберрации (геометрические искажения) значительные. Проблема кроется в расстоянии между двумя поверхностями.

Однако если сделать глубокую экваториальную канавку, чтобы блокировать лучи, которые вызывают дефекты изображения, она превращается из очень посредственной лупы в прекрасную. Такое решение приписывается Коддингтону, а увеличитель его имени можно приобрести сегодня в виде небольших ручных луп для изучения очень маленьких объектов. Но доказательств того, что это было сделано до 19-го века, нет.