Отрицательные числа. Положительные и отрицательные числа

Определение положительных и отрицательных чисел

Для определения положительных и отрицательных чисел воспользуемся координатной прямой, которая располагается горизонтально и направлена слева направо.

Замечание 1

Началу отсчета на координатной прямой соответствует число нуль, которое не относится ни к положительным, ни к отрицательным числам.

Определение 1

Числа, соответствующие точкам координатной прямой, которые лежат правее от начала отсчета, называются положительными .

Определение 2

Числа, соответствующие точкам координатной прямой, которые лежат левее от начала отсчета, называются отрицательными .

Из данных определений вытекает, что множество всех отрицательных чисел противоположно множеству всех положительных чисел.

Отрицательные числа всегда записывают со знаком «–» (минус).

Пример 2

Примеры отрицательных чисел:

  • Рациональные числа $-\frac{9}{17}$, $-4 \frac{11}{23}$, $–5,25$, $–4,(79)$.
  • Иррациональные числа$ -\sqrt{2}$, бесконечная непериодическая десятичная дробь $–103,1012341981…$

Для упрощения записи перед положительными числами часто не записывают знак «+» (плюс), а перед отрицательными знак «–» записывают всегда. В подобных случаях необходимо помнить, что запись «$17,4$» равносильна записи «$+17,4$», запись «$\sqrt{5}$» равносильна записи «$+\sqrt{5}$» и т.д.

Таким образом, можно использовать следующее определение положительных и отрицательных чисел:

Определение 3

Числа, записанные со знаком «+», называются положительными , а со знаком «–» – отрицательными .

Используется определение положительных и отрицательных чисел, которое основано на сравнении чисел:

Определение 4

Положительными числами являются числа больше нуля, а отрицательными числами – числа меньше нуля.

Замечание 3

Таким образом, число нуль разделяет положительные и отрицательные числа.

Правила чтения положительных и отрицательных чисел

Замечание 4

При чтении числа со знаком впереди него сначала читается его знак, а затем само число.

Пример 3

Например, «$+17$» читают «плюс семнадцать»,

«$-3 \frac{4}{11}$» читают «минус три целых четыре одиннадцатых».

Замечание 5

Стоит отметить, что названия знаков «плюс» и «минус» не склоняются, в то время как числа могут склоняться.

Пример 4

Интерпретация положительных и отрицательных чисел

Положительные числа используются для обозначения увеличения какой-нибудь величины, прихода, прибавки, возрастание значения и т.д.

Отрицательные числа применяют для противоположных понятий – для обозначения уменьшения какой-нибудь величины, расхода, недостатка, долга, снижения значения и т.д.

Рассмотрим примеры.

Читатель взял в библиотеке $4$ книги. Положительное значение числа $4$ показывает число книг, которые есть у читателя. Если ему нужно сдать $2$ книги в библиотеку, можно использовать отрицательное значение $–2$, которое будет указывать на уменьшение числа книг у читателя.

Положительные и отрицательные числа часто используют для описания значений различных величин в измерительных приборах. Например, термометр для измерения температуры имеет шкалу, на которой отмечены положительные и отрицательные значения.

Похолодание на улице на $3$ градуса, т.е. снижение температуры, можно обозначить значением $–3$, а повышение температуры на $5$ градусов – значением $+5$.

Принято отрицательные числа изображать синим цветом, что символизирует холод, низкую температуру, а положительные числа – красным цветом, что символизирует тепло, высокую температуру. Обозначение положительных и отрицательных чисел с помощью красного и синего цвета используется в различных ситуациях для выделения знака чисел.

Отрицательные числа располагаются слева от нуля . Для них, как и для положительных чисел, определено отношение порядка , позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе . - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

  • Отрицательные формы рельефа
  • Отрицательный и положительный нуль

Смотреть что такое "Отрицательные числа" в других словарях:

    Отрицательные числа - действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    Положительные и отрицательные числа - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Целые числа - Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Натуральные числа - числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    ЭЙЛЕРОВЫ ЧИСЛА - коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число - Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    История арифметики - Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Арифметика - Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. В 2 частях. Часть 2. Положительные и отрицательные числа , . Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5-6 классов, разработанного авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках…

Состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел , определено отношение порядка, позволяющее сравнивать одно целое число с другим.

n -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе. - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Отрицательные числа" в других словарях:

    Действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    Коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. Положительные и отрицательные числа. В 2 частях. Часть 2. ФГОС, Гельфман Э.Г.. Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5–6 классов, разработанный авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках проекта…

В рамках натуральных чисел можно вычесть только меньшее число из большего, а переместительный закон не включает вычитание - например, выражение 3 + 4 − 5 {\displaystyle 3+4-5} допустимо, а выражение с переставленными операндами 3 − 5 + 4 {\displaystyle 3-5+4} недопустимо...

Добавление к натуральным числам отрицательных чисел и нуля делает возможной операцию вычитания для любых пар натуральных чисел. В результате такого расширения получается множество (кольцо) «целых чисел ». При дальнейших расширениях множества чисел рациональными или вещественными числами для них тем же путём получаются соответствующие отрицательные значения. Для комплексных чисел упорядоченность не определена, и понятия «отрицательное число» не существует.

Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля:

n + (− n) = 0. {\displaystyle n+\left(-n\right)=0.}

Оба числа называются противоположными друг для друга. Вычитание целого числа a из другого целого числа b равносильно сложению b с противоположным для a :

b − a = b + (− a) . {\displaystyle b-a=b+\left(-a\right).}

Пример: 25 − 75 = − 50. {\displaystyle 25-75=-50.}

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности.

  1. Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху.
  2. При умножении целых чисел действует правило знаков : произведение чисел с разными знаками отрицательно, с одинаковыми - положительно.
  3. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 −10.

При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Например, разделим −24 на 5 с остатком:

− 24 = 5 ⋅ (− 5) + 1 = 5 ⋅ (− 4) − 4 {\displaystyle -24=5\cdot (-5)+1=5\cdot (-4)-4} .

Вариации и обобщения

Понятия положительных и отрицательных чисел можно определить в любом упорядоченном кольце. Чаще всего эти понятия относятся к одной из следующих числовых систем:

Приведенные выше свойства 1-3 имеют место и в общем случае. К комплексным числам понятия «положительный» и «отрицательный» неприменимы.

Исторический очерк

Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Исключение составлял Диофант, который в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако он рассматривал их лишь как промежуточный этап, полезный для вычисления окончательного, положительного результата.

Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или, как у Диофанта, признавались как временные значения. Умножение и деление для отрицательных чисел тогда ещё не были определены. Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными.

В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Первое описание их в европейской литературе появилось в «Книге абака» Леонарда Пизанского (1202 год), который трактовал отрицательные числа как долг. Бомбелли и Жирар в своих трудах считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения нехватки чего-либо. Даже в XVII веке Паскаль считал, что 0 − 4 = 0 {\displaystyle 0-4=0} , так как «ничто не может быть меньше, чем ничто» . Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1: (− 1) = (− 1) : 1 {\displaystyle 1:(-1)=(-1):1} - в ней первый член слева больше второго, а справа - наоборот, и получается, что большее равно меньшему («парадокс

1. Вопросы, связанные с отрицательными числами являются одним из трудных вопросов для освоения учащимися.

История развития математики показывает, что отрицательные числа значительно труднее дались человеку, это связано с тем, отрицательные числа менее связаны с практической жизнью.

Отрицательные числа возникли в связи с необходимостью выполнения с известными числами. Математики древней Греции не признали отрицательных чисел, они не могли дать им конкретного толкования. Лишь работу Диофанта (3 в. н.э) встречаются преобразования, которые приводят к необходимости выполнения операций над отрицательными числами.

Отрицательные числа появляются лишь в зачаточной форме. Довольно широкое распределение они получили в работах индийских ученых. Положительные числа они называли настоящими, а отрицательные- не настоящими- ложными. Отрицательные числа рассматривали, как долг, а положительные числа как наличные деньги.

Первые правила сложения и вычитания принадлежат индийским ученым. И связаны с трактовкой этих чисел как имущество и долг.

Ученые долго не могли объяснить, дать трактовку произведения двух отрицательных чисел. Почему произведение 2-х долгов есть имущество. Такие ученые как Эйлер, Коми давали свое объяснение правилу произведения чисел, но они приводили к ошибочным результатам.

Немецкий ученый М. Штифель впервые в 1544 г. дал определение отрицательных чисел, как чисел меньших нуля.

Впервые математическую интерпретацию дал Рене Декарт в 1737 г. в книги «Аналитическая геометрия». Отрицательные числа он рассматривал как самостоятельное, расположенное на оси ОХ влево от начало координат. Однако он эти числа назвал ложными. Всеобщее признание отрицательные числа получили в первой половине 21 века, так отрицательные числа вошли в историю математики.

2. Различные приемы введения отрицательных чисел. В учебной литературе можно отметить 3 способа введения отрицательных чисел.

1) Рассматриваются случаи, когда вычисление на множестве положительных чисел ложно.

2) Рассматривают векторы расположенные на одной прямой, необходимость охарактеризовать не только их длину, но и направление приводит к понятию положительных и отрицательных чисел.

3) Введение отрицательных чисел посредством расположения изменяющихся величин в противоположных направлениях.

Методика введения отрицательного числа.

Прежде чем дать понятие об отрицательном числе необходимо показать на конкретных примерах , что известно уч-ся чисел недостаточно для характеристики положения точки на прямой к началу отсчета.

На достаточном количестве примеров надо показать неудобства понятия типа вправо или влево, вверх или вниз начертить числовую ось. Необходимо отложить начало отсчета и чтоб для определенности таких шкал, которые находятся вправо со знаком плюс, влево с противоположным знаком- минус.

В учебнике рассматривается достаточное число примеров, показывающих о целесообразности использования определенных знаков для обозначения направления противоположности движения. Для понятия введения отрицательного числа необходимо пользоваться демонстративным термометром и другими пособиями.

Знакомству с противоположными числами способствует изучение центра симметрии.

Понятие о противоположных числах связывается симметричными точками. В тоже время введение этого понятия основывается с геометрическим истолкованием положительных и отрицательных чисел.

В пункте противоположных чисел вводится определение целых чисел. Натуральные числа, противоположные числа, нуль- называют целыми числами. Модуль числа- понятие модуль числа дает от начала отсчета до точки соответствующему числу. Следует обратить внимание учащихся как мотивировать определение модуля числа.

В учебниках понятие модуля числа вводится путем рассмотрения примеров, поясняют как находить модуль числа. Поясняется, что модуль числа не может быть отрицательным ибо модуль числа это расстояние- обращается внимание, что для положительного числа модуль равен самому числу. Модуль отрицательного числа равен противоположному числу.

Сравнение чисел.

Соотношения равенства и неравенства между положительными и отрицательными числами вводится по определению, они не могут быть получены путем доказательства, причем очень важно показать учащимся целесообразность определения на конкретных примерах и геометрических образах.

Учащиеся должны на столько прочно усвоить расположение чисел на числовой прямой, чтобы это могло служить основным средством сравнения чисел. Иногда возникают трудности в сравнении отрицательных чисел, чтобы преодолеть их, необходимо рассмотреть их на числовой прямой.

Действия над отрицательными и положительными числами.

Основное, что надо учитывать учителю при рассмотрении этого материала – это действия сложения и вычитания над положительными и отрицательными числами вводится по определению, причем формулировки этих определений должны включать в себя ранее известные учащимся понятия об этих действиях. Вычитание и деление определяются как обратные сложению и умножению.

В учебнике отдельно дается определение действия сложения чисел с разными знаками, формулировки этих правил содержат указание на следующие действия. В учебнике большое время уделяется к тому как подойти к действию сложению. Основное внимание уделяется к рассмотрению конкретных задач, обращаясь при этом к координатной прямой.

Каким бы путем не вводилось правило сложение учащимся должно быть ясно, что ничто не доказывается при рассмотрении следующих примеров.

Примеры признаны лишь иллюстрировать целесообразность правил. Учащиеся должны овладеть навыками выполнения сложения 2-х отрицательных чисел с разными знаками, противоположных чисел, нуля с положительными и отрицательными числами.

Рассматривая свойства действий важно показать учащимся, что при установленных определениях действий сложения и вычитания чисел сохраняется все те законы которые имели место для положительных чисел.

Учащимся дается формулировка переместительного и сочетательного законов запись каждого из них с помощью букв.

Вычитание отрицательных чисел определяются как действие обратное сложению. Вычитание сводится к прибавлению противоположного числа.

Умножение положительных и отрицательных чисел представляет наибольшую трудность, трудность заключается в том, что учащейся испытывают потребность в доказательстве правил знаков при умножение, а учитель должен убедить учащихся, что такого доказательства нельзя искать или требовать, таким образом действие умножения вводится по определению, которое можно ввести по разному и по разному истолковать правило знаков. Сложения и умножения имеют много общего, однако трактовка правил умножения вызывает больше трудности.

Рассмотрим объяснения правил умножения является рассмотрение конкретных задач, решение которых требует вычисление по формуле а в, при различных а и в. недостатком этого метода является, то что они доказывают правило умножения.

Многие авторы придерживаются пути, когда в начале дается формулировка правил умножения, затем оно поясняется на примерах, задачах. Учащийся убеждаются на конкретном математическом в практичной целесообразности введенного определения. обычно в учебниках формулировки правил умножения чисел с разными знаками и правил умножения натуральных чисел представляет расписания рядов примеров.

При этом используется положение о том, что если изменить знак одного из множителей, то изменится знак произведения.

Правило формулируется удобным для использования вида. Необходимо обратить внимание учащихся на условия равенство произведения нулю.

Деление положительных, отрицательных чисел рассматривается как действие обратное умножению. Учащемуся сообщается, что деление положительных и отрицательных чисел имеет тот же смысл, что и деление положительных чисел. Важно обратить внимание на законы вычисления и умножения выражений.

Так же как и в случая сложения, правило сложения и умножения натуральных чисел может быть выведены из умножения чисел. Считая, что правило знаков для суммы известно.

В 6 классе в теме рациональные числа вводятся памяти отрицательные числа, которое может быть записано в виде дроби. Расписывается множество рациональных чисел можно сбить внимание, что когда выполнимо:, +, *, - на число не равное нулю.

При вычитании или выполни действий учащийся получают числа того же множества и это множество обладает свойством замкнутости по отношению к действиям первой и второй степени. Для сложения справедливы переместительный и сочетательный законы имеется нейтральный элемент, имеется противоположный элемент.

Для умножения справедливы первый распределительный и сочетательный закон, имеется нейтральный элемент 1, противоположный элемент ().

Практическое занятие №2

Тема: Изучение функции в ШКМ

1. Методика введения понятия функции.

2. Методика изучения отдельных функций

3. Виды функций, изучаемых в основной школе

Литература: , . Дополнительная литература I.

Как особое число не имеет знака.

Примеры записи чисел: + 36 , 6 ; − 273 ; 142. {\displaystyle +36{,}6;\ -273;\ 142.} Последнее число не имеет знака и поэтому положительно.

Следует отметить, что плюс и минус указывают знак для чисел, но не для буквенных переменных или алгебраических выражений. Например, в формулах − t ; a + b ; − (a 2 + b 2) {\displaystyle -t;\ a+b;\ -(a^{2}+b^{2})} символы плюса и минуса задают не знак выражения, перед которым они стоят, а знак арифметической операции, так что знак результата может быть любым, он определяется только после вычисления выражения.

Кроме арифметики, понятие знака используется в других разделах математики, в том числе для нечисловых математических объектов (см. ниже). Понятие знака важно также в тех разделах физики, где физические величины делятся на два класса, условно названные положительными и отрицательными - например, электрические заряды , положительная и отрицательная обратная связь , разнообразные силы притяжения и отталкивания.

Знак числа

Положительные и отрицательные числа

Нулю не присвоен никакой знак, то есть + 0 {\displaystyle +0} и − 0 {\displaystyle -0} - это в арифметике одно и то же число . В математическом анализе смысл символов + 0 {\displaystyle +0} и − 0 {\displaystyle -0} может различаться, см. об этом Отрицательный и положительный ноль ; в информатике компьютерная кодировка двух нулей (целого типа) может отличаться, см. Прямой код .

В связи со сказанным вводятся ещё несколько полезных терминов:

  • Число неотрицательно , если оно больше или равно нулю.
  • Число неположительно , если оно меньше или равно нулю.
  • Положительные числа без нуля и отрицательные числа без нуля иногда (чтобы подчеркнуть, что они ненулевые) называют ""строго положительными" и "строго отрицательными" соответственно.

Та же терминология иногда используется для вещественных функций . Например, функция называется положительной , если все её значения положительны, неотрицательной , если все её значения неотрицательны и т. д. Говорят также, что функция положительна/отрицательна на заданном интервале её определения..

Пример использования функции см. в статье Квадратный корень#Комплексные числа .

Модуль (абсолютная величина) числа

Если у числа x {\displaystyle x} отбросить знак, полученное значение называется модулем или абсолютной величиной числа x {\displaystyle x} , оно обозначается | x | . {\displaystyle |x|.} Примеры: | 3 | = 3 ; | − 3 | = 3. {\displaystyle |3|=3;\ |-3|=3.}

Для любых вещественных чисел a , b {\displaystyle a,b} имеют место следующие свойства.

Знак у нечисловых объектов

Знак угла

Величина угла на плоскости считается положительной, если она измеряется против часовой стрелки, иначе - отрицательной. Аналогично классифицируются два случая вращения :

  • вращение на плоскости - например, вращение на (–90°) происходит по часовой стрелке;
  • поворот в пространстве вокруг ориентированной оси, как правило, считается положительным, если выполнено «правило буравчика », иначе он считается отрицательным.

Знак направления

В аналитической геометрии и физике нередко продвижения вдоль заданной прямой или кривой условно делятся на положительные и отрицательные. Такое деление может зависеть от постановки задачи или от выбранной системы координат. Например, при подсчёте длины дуги кривой часто удобно приписать этой длине на одном из двух возможных направлений знак минус.

Знак в вычислительной технике

старший бит
0 1 1 1 1 1 1 1 = 127
0 1 1 1 1 1 1 0 = 126
0 0 0 0 0 0 1 0 = 2
0 0 0 0 0 0 0 1 = 1
0 0 0 0 0 0 0 0 = 0
1 1 1 1 1 1 1 1 = −1
1 1 1 1 1 1 1 0 = −2
1 0 0 0 0 0 0 1 = −127
1 0 0 0 0 0 0 0 = −128
Для представления знака целого числа большинство компьютеров используют

Допустим, у Дениса очень много конфет - целая большая коробка. Сперва Денис съел 3 конфеты. Потом папа дал Денису 5 конфет. Потом Денис подарил Матвею 9 конфет. Наконец, мама дала Денису 6 конфет. Вопрос: Стало ли у Дениса в конечном итоге больше или меньше конфет, чем было вначале? Если больше, то насколько больше? Если меньше, то насколько меньше?

Для того чтобы не запутаться с этой задачей, удобно применить один трюк. Давайте выпишем подряд все числа из условия. При этом мы будем ставить знак «+» перед числами, которые обозначают, насколько конфет у Дениса прибавилось, и знак «−» перед числами, которые обозначают, насколько конфет у Дениса убавилось. Тогда всё условие выпишется очень коротко:

− 3 + 5 − 9 + 6.

Эту запись можно прочитать, например, так: «Сперва Денис получил минус три конфеты. Потом плюс пять конфет. Потом минус девять конфет. И наконец плюс шесть конфет». Слово «минус» меняет смысл фразы на прямо противоположный. Когда я говорю: «Денис получил минус три конфеты», - это на самом деле означает, что у Дениса на три конфеты убыло. Слово «плюс», напротив, подтверждает смысл фразы. «Денис получил плюс пять конфет» означает то же самое, что и просто «Денис получил пять конфет».

Итак, сперва Денис получил минус три конфеты. Значит, у Дениса стало на минус три конфеты больше, чем было вначале. Для краткости можно сказать: у Дениса стало минус три конфеты.

Потом Денис получил плюс пять конфет. Легко сообразить, что у Дениса стало плюс две конфеты. Значит,

− 3 + 5 = + 2.

Потом Денис получил минус девять конфет. И вот сколько конфет у него стало:

− 3 + 5 − 9 = + 2 − 9 = − 7.

Наконец Денису досталось еще +6 конфет. И всего конфет стало:

− 3 + 5 − 9 + 6 = + 2 − 9 + 6 = − 7 + 6 = − 1.

На привычном языке это означает, что в конце концов у Дениса оказалось на одну конфету меньше, чем было вначале. Задача решена.

Трюк со знаками «+» или «−» применяется очень широко. Числа со знаком «+» называются положительными . Числа со знаком «−» называются отрицательными . Число 0 (ноль) не является ни положительным, ни отрицательным, потому что +0 ничем не отличается от −0. Таким образом, мы имеем дело с числами из ряда

..., −5, −4, −3, −2, −1, 0, +1, +2, +3, +4, +5, ...

Такие числа называются целыми числами . А те числа, у которых вообще нет никакого знака и с которыми мы имели дело до сих пор, называются натуральными числами (только ноль не относится к натуральным числам).

Целые числа можно представить себе как ступеньки лестницы. Число ноль - это лестничная площадка, находящаяся вровень с улицей. Отсюда можно ступенька за ступенькой подняться наверх, к более высоким этажам, а можно и спуститься вниз, в подвал. До тех пор, пока нам не нужно заходить в подвал, нам вполне достаточно одних только натуральных чисел и нуля. Натуральные числа - это, по сути дела, то же самое, что положительные целые числа.

Строго говоря, целое число - это не номер ступеньки, а команда на перемещение по лестнице. Например, число +3 говорит, что следует подняться на три ступеньки вверх, а число −5 означает, что надо спуститься на пять ступенек вниз. Просто за номер ступеньки принимают такую команду, которая перемещает нас на данную спупеньку, если мы начинаем движение с нулевого уровня.

Вычисления с целыми числами легко проделывать, просто мысленно прыгая вверх или вниз по ступенькам - если, конечно, не потребуется делать слишком большие прыжки. Но как быть, когда надо прыгнуть на сто или более ступенек? Ведь не будем же мы рисовать такую длиннющую лестницу!

А впрочем, почему бы и нет? Мы можем нарисовать длинную лестницу с такого большого расстояния, на котором отдельные ступеньки уже неразличимы. Тогда наша лестница превратиться просто в одну прямую линию. А чтобы ее удобнее было поместить на страницу, нарисуем ее без наклона и отдельно отметим положение ступеньки 0.

Поучимся вначале прыгать по такой прямой на примере выражений, значения которых мы уже давно умеем вычислять. Пусть требуется найти

Строго говоря, раз уж мы имеем дело с целыми числами, то нам следовало бы написать

Но у положительного числа, стоящего в начале строки знак «+» обычно не ставят. Прыжки по лестнице выглядят приблизительно так:

Вместо двух больших прыжков нарисованных над прямой (+42 и +53), можно сделать один прыжок, нарисованный под прямой, причем длина этого прыжка, конечно, равна

Такого рода рисуночки на математическом языке принято называть диаграммами. Вот как выглядит диаграмма для привычного нам примера на вычитание

Вначале мы сделали большой прыжок вправо, потом прыжок поменьше влево. В результате мы так и остались справа от нуля. Но возможна и другая ситуация, как, например, в случае выражения

На этот раз прыжок враво оказался короче прыжка влево: мы перелетели через ноль и оказались в «подвале» - там, где находятся ступеньки с отрицательными номерами. Вглядимся попристальнее в наш прыжок влево. Всего мы преодолели 95 ступенек. После того как мы преодолели 53 ступеньки, мы поравнялись с отметкой 0. Спрашивается сколько ступенек мы предолели после этого? Ну, конечно

Таким образом, оказавшись на ступеньке 0, мы спустились вниз еще на 42 ступеньки, а значит, в конце концов мы пришли на ступеньку с номером −42. Итак,

53 − 95 = −(95 − 53) = −42.

Подобным же образом, рисуя диаграммы, легко установить что

−42 − 53 = −(42 + 53) = −95;

−95 + 53 = −(95 − 53) = −42;

и, наконец,

−53 + 95 = 95 − 53 = 42.

Таким образом, мы научились свободно путешествовать по всей лестнице целых чисел.

Рассмотрим теперь такую задачу. Денис и Матвей обмениваются фантиками. Вначале Денис дал Матвею 3 фантика, а потом взял у него 5 фантиков. Сколько фантиков в итоге получил Матвей?

Но раз Денис получил 2 фантика, то Матвей получил −2 фантика. К прибыли Дениса мы приписали минус и получили прибыль Матвея. Наше решение можно записать в виде единственного выражения

−(−3 + 5) = −2.

Тут всё просто. Но давайте слегка видоизменим условие задачи. Пусть Денис дал сперва Матвею 5 фантиков, а потом взял у него 3 фантика. Спрашивается, опять-таки, сколько фантиков в итоге получил Матвей?

Снова вначале рассчитаем «прибыль» Дениса:

−5 + 3 = −2.

Значит, Матвей получил 2 фантика. Но как теперь наше решение записать в виде единственного выражения? Что бы такое приписать к отрицательному числу −2, чтобы получить положительное число 2? Оказывается, и на этот раз надо приписать знак минус. Математики очень любят единообразие. Они стремятся к тому, чтобы решение похожих задач записывались в виде похожих выражений. В данном случае решение выглядит так:

−(−5 + 3) = −(−2) = +2.

Так уж математики договорились: если к положительному числу приписать минус, то оно превращается в отрицательное, а если к отрицательному числу приписать минус, то оно превращается в положительное. Это очень логично. В конце концов, спуститься на минус две ступеньки вниз это то же самое, что подняться на плюс две ступеньки вверх. Итак,

−(+2) = −2;
−(−2) = +2.

Для полноты картины отметим еще, что

+(+2) = +2;
+(−2) = −2.

Это дает нам возможность по-новому взглянуть на давно привычные вещи. Пусть дано выражение

Смысл этой записи можно представлять себе по-разному. Можно, по-старинке, считать, что из положительного числа +5 отнимается положительное число +3:

В этом случае +5 называется уменьшаемым , +3 - вычитаемым , а всё выражение - разностью . Именно так учат в школе. Однако слова «уменьшаемое» и «вычитаемое» нигде, кроме школы, не употребляются и их можно забыть после итоговой контрольной работы. Про эту же самую запись можно сказать, что к положительному числу +5 прибавляется отрицательное число −3:

Числа +5 и −3 называются слагаемыми , а всё выражение - суммой . В данной сумме только два слагаемых, но, вообще, сумма может состоять из скольких угодно слагаемых. Подобным же образом, выражение

можно с одинаковым правом рассматривать как сумму двух положительных чисел:

и как разность положительного и отрицательного чисел:

(+5) − (−3).

После того как мы познакомились с целыми числами, нам обязательно надо уточнить правила раскрытия скобок. Если перед скобками стоит знак «+», то такие скобки можно просто стереть, и все числа в них сохраняют свои знаки, например:

+(+2) = +2;
+(−2) = −2;
+(−3 + 5) = −3 + 5;
+(−3 − 5) = −3 − 5;
+(5 − 3) = 5 − 3
и так далее.

Если же перед скобками стоит знак «−», то стирая скобку, мы должны также поменять знаки у всех чисел, стоявших в ней:

−(+2) = −2;
−(−2) = +2;
−(−3 + 5) = +3 − 5 = 3 − 5;
−(−3 − 5) = +3 + 5 = 3 + 5;
−(5 − 3) = −(+5 − 3) = −5 + 3;
и так далее.

При этом полезно держать в голове задачу про обмен фантиками между Денисом и Матвеем. Например, последнюю строчку можно получить так. Считаем, что Денис вначале взял 5 фантиков у Матвея, а потом еще −3. Всего Денис получил 5 − 3 фантиков, а Матвей - то же самое число, но с противоположным знаком, то есть −(5 − 3) фантиков. Но ведь эту же задачу можно решить и другим способом, имея в виду, что всякий раз, когда Денис получает, Матвей отдает. Значит, вначале Матвей получил −5 фантиков, а потом еще +3, что в итоге дает −5 + 3.

Подобно натуральным числам, целые числа можно сравнивать между собой. Зададимся, например, вопросом: какое число больше: −3 или −1? Посмотрим на лестницу с целыми числами, и сразу станет ясно, что −1 больше, чем −3, и, значит, −3 меньше, чем −1:

−1 > −3;
−3 < −1.

А теперь давайте уточним: насколько −1 больше, чем −3? Иными словами, на сколько ступенек надо подняться, чтобы перейти со ступеньки −3 на ступеньку −1? Ответ на этот вопрос можно записать в виде разности чисел −1 и −3:

− 1 − (−3) = −1 + 3 = 3 − 1 = 2.

Прыгая по ступенькам, легко проверить, что это так. А вот еще один любопытный вопрос: насколько число 3 больше числа 5? Или, что то же самое: на сколько ступенек надо подняться вверх, чтобы перейти со ступеньки 5 на ступеньку 3? Еще недавно этот вопрос поставил бы нас в тупик. Но теперь мы легко можем выписать ответ:

3 − 5 = − 2.

Действительно, если мы находимся на ступеньке 5 и поднимемся вверх еще на −2 ступеньки, то окажемся как раз на ступеньке 3.

Задачи

2.3.1. Какой смысл имеют следующие фразы?

Денис дал папе минус три конфеты.

Матвей старше Дениса на минус два года.

Чтобы попасть в нашу квартиру, надо спуститься на минус два этажа вниз.

2.3.2. Имеют ли смысл такие фразы?

У Дениса минус три конфеты.

На лугу пасется минус две коровы.

Замечание. Эта задача не имеет однозначного решения. Не будет, конечно, ошибкой утверждать, что данные высказывания бессмысленны. И в то же время им можно придать вполне ясный смысл. Допустим, у Дениса есть большая коробка, доверху наполненная конфетами, но содержимое этой коробки - не в счет. Или допустим, что две коровы из стада не вышли пастись на луг, а по какой-то причине остались в коровнике. Стоит иметь в виду, что и самые привычные фразы могут оказаться неоднозначными:

У Дениса три конфеты.

Это высказывание не исключает, что у Дениса припрятана где-то еще огромная коробка с конфетами, но о тех конфетах просто умалчивается. Точно так же, когда я говорю: «У меня пять рублей», - я не имею в виду, что это и есть всё мое состояние.

2.3.3. Кузнечик прыгает по лестнице, начиная с этажа, где находится квартира Дениса. Сначала он прыгнул на 2 ступеньки вниз, потом на 5 ступенек вверх, и наконец на 7 ступенек вниз. На сколько ступенек и в каком направлении переместился кузнечик?

2.3.4. Найти значения выражений:

− 6 + 10;
− 28 + 76;
и т.п.

− 6 + 10 = 10 − 6 = 4.

2.3.5. Найти значения выражений:

8 − 20;
34 − 98;
и т.п.

8 − 20 = − (20 − 8) = − 12.

2.3.6. Найти значения выражений:

− 4 − 13;
− 48 − 53;
и т.п.

− 4 − 13 = − (4 + 13) = − 17.

2.3.7. Для следующих выражений найти значения, проводя вычисления в том порядке, который задается скобками. Затем раскрыть скобки и убедиться, что значения выражений остались прежними. Составить задачи про конфеты, которые решаются таким образом.

25 − (−10 + 4);
25 + (− 4 + 10);
и т.п.

25 − (− 10 + 4) = 25 − (−(10 − 4)) = 25 − (−6) = 25 + 6 = 31.

25 − (− 10 + 4) = 25 + 10 − 4 = 35 − 4 = 31.

«У Дениса было 25 конфет. Он отдал папе минус десять конфет, а Матвею четыре конфеты. Сколько конфет у него стало?»