Формула нахождения площади боковой поверхности правильной пирамиды. Найти площадь поверхности правильной треугольной пирамиды

Параллелепипед – это четырехугольная призма, в основании имеющая параллелограмм. Существуют готовые формулы для расчета боковой и полной площади поверхности фигуры, для которых необходимы лишь длины трех измерений параллелепипеда.

Как найти площадь боковой поверхности прямоугольного параллелепипеда

Необходимо различать прямоугольный и прямой параллелепипед. Основание прямой фигуры может представлять собой любой параллелограмм. Площадь такой фигуры необходимо вычислять по другим формулам.

Сумма S боковых граней прямоугольного параллелепипеда вычисляется по простой формуле P*h, где P – периметр и h – высота. На рисунке видно, что у прямоугольного параллелепипеда противоположные грани равны, а высота h совпадает с длиной ребер, перпендикулярных основанию.

Площадь поверхности прямоугольного параллелепипеда

Полная площадь фигуры состоит из боковой и площади 2-х оснований. Как найти площади прямоугольного параллелепипеда:

Где a, b и c – это измерения геометрического тела.
Описанные формулы просты для понимания и полезны при решении множества задач геометрии. Пример типового задания представлен на следующем изображении.

При решении подобного рода задач следует помнить, что основание четырехугольной призмы выбирается произвольно. Если за основание принять грань с измерениями x и 3, то значения Sбок будет иным, а Sполн останется 94 см2.

Площадь поверхности куба

Куб – это прямоугольный параллелепипед, у которого все 3 измерения равны между собой. В связи с этим формулы полной и боковой площади куба отличаются от стандартных.

Периметр куба равен 4a, следовательно, Sбок= 4*a*a = 4*a2. Данные выражения не обязательны для заучивания, но значительно ускоряют решение заданий.

Перед изучением вопросов о данной геометрической фигуре и её свойствах, следует разобраться в некоторых терминах. Когда человек слышит о пирамиде, ему представляются большущие постройки в Египте. Так выглядят самые простые из них. Но они бывают разных видов и форм, а значит и формула вычисления для геометрических фигур будет разной.

Пирамида – геометрическая фигура , обозначающая и представляющая собой несколько граней. По сути – это тот же многогранник, в основании которого лежит многоугольник, а по бокам расположены треугольники, соединяющиеся в одной точке – вершине. Фигура бывает двух основных видов:

  • правильная;
  • усечённая.

В первом случае, в основании лежит правильный многоугольник. Тут все боковые поверхности равны между собой и сама фигура порадует глаз перфекциониста.

Во втором случае, оснований два — большое в самом низу и малое между вершиной, повторяющее форму основного. Иными словами – усечённая пирамида представляет собой многогранник с сечением, образованным параллельно основанию.

Термины и обозначения

Основные термины:

  • Правильный (равносторонний) треугольник – фигура с тремя одинаковыми углами и равными сторонами. В этом случае все углы имеют 60 градусов. Фигура является простейшей из правильных многогранников. Если эта фигура лежит в основании, то такой многогранник будет называться правильной треугольной. Если в основании лежит квадрат, пирамида будет называться правильной четырёхугольной пирамидой.
  • Вершина – самая верхняя точка, где сходятся грани. Высота вершины образуется прямой линией, исходящей от вершины к основанию пирамиды.
  • Грань – одна из плоскостей многоугольника. Она может быть в виде треугольника в случае с треугольной пирамидой либо в виде трапеции для усечённой пирамиды.
  • Сечение – плоская фигура, образующаяся в результате рассечения. Не стоит путать с разрезом, так как разрез показывает и то, что находится за сечением.
  • Апофема – отрезок, проведённый из вершины пирамиды к её основанию. Он также является высотой той грани, где находится вторая точка высоты. Данное определение справедливо лишь по отношению к правильному многограннику. К примеру – если это не усечённая пирамида, то грань будет представлять собой треугольник. В данном случае высота этого треугольника и станет апофемой.

Формулы площади

Находить площадь боковой поверхности пирамиды любого типа можно несколькими способами. Если фигура не симметричная и представляет собой многоугольник с разными сторонами, то в данном случае легче вычислить общую площадь поверхности через совокупность всех поверхностей. Иными словами – надо посчитать площадь каждой грани и сложить их вместе.

В зависимости от того, какие параметры известны, могут потребоваться формулы вычисления квадрата, трапеции, произвольного четырёхугольника и т.д. Сами формулы в разных случаях тоже будут иметь отличия.

В случае с правильной фигурой находить площадь намного проще. Достаточно знать всего несколько ключевых параметров. В большинстве случаев требуются вычисления именно для таких фигур. Поэтому далее будут приведены соответствующие формулы. В противном случае пришлось бы расписать всё на несколько страниц, что только запутает и собьёт с толку.

Основная формула для вычисления площади боковой поверхности правильной пирамиды будет иметь следующий вид:

S=½ Pa (P – периметр основания, а – апофема)

Рассмотрим один из примеров. Многогранник имеет основание с отрезками A1, А2, А3, А4, А5, и все они равны 10 см. Апофема пусть будет равна 5 см. Для начала надо найти периметр. Так как все пять граней основания одинаковые, можно находить так: Р=5*10=50 см. Далее применяем основную формулу: S =½*50*5=125 см в квадрате.

Площадь боковой поверхности правильной треугольной пирамиды вычислить легче всего. Формула имеет следующий вид:

S =½* ab *3, где а – апофема, b – грань основания. Множитель тройки здесь означает количество граней основания, а первая часть – площадь боковой поверхности. Рассмотрим пример. Дана фигура с апофемой 5 см и гранью основания 8 см. Вычисляем: S =1/2*5*8*3=60 см в квадрате.

Площадь боковой поверхности усечённой пирамиды вычислять немного сложнее. Формула выглядит так: S =1/2*(p _01+ p _02)*a , где р_01 и р_02 являются периметрами оснований, а – апофема. Рассмотрим пример. Допустим, для четырёхугольной фигуры даны размеры сторон оснований 3 и 6 см, апофема равна 4 см.

Тут для начала следует найти периметры оснований: р_01 =3*4=12 см; р_02=6*4=24 см. Осталось подставить значения в основную формулу и получим: S =1/2*(12+24)*4=0,5*36*4=72 см в квадрате.

Таким образом, можно найти площадь боковой поверхности правильной пирамиды любой сложности. Следует быть внимательным и не путать эти вычисления с полной площадью всего многогранника. А если это всё же понадобится сделать – достаточно вычислить площадь самого большого основания многогранника и прибавить её к площади боковой поверхности многогранника.

Видео

Закрепить информацию о том, как найти площадь боковой поверхности разных пирамид, вам поможет это видео.

Не получили ответ на свой вопрос? Предложите авторам тему.

Инструкция

Прежде всего, стоит понять, что боковая поверхность пирамиды представлена несколькими треугольниками, площади которых можно найти с помощью самых различных формул, в зависимости от известных данных:

S = (a*h)/2, где h - высота, опущенная на сторону a;

S = a*b*sinβ, где a, b - стороны треугольника, а β - угол между этими сторонами;

S = (r*(a + b + c))/2, где a, b, c - стороны треугольника, а r - радиус вписанной в этот треугольник окружности;

S = (a*b*c)/4*R, где R - радиус описанной вокруг окружности треугольника;

S = (a*b)/2 = r² + 2*r*R (если треугольник - прямоугольный);

S = S = (a²*√3)/4 (если треугольник - равносторонний).

На самом деле, это лишь самые основные из известных формул для нахождения площади треугольника.

Рассчитав при помощи указанных выше формул площади всех треугольников, являющихся гранями пирамиды, можно приступить к исчислению площади данной пирамиды. Делается это предельно просто: необходимо сложить площади всех треугольников, образующих боковую поверхность пирамиды. Формулой это можно выразить так:

Sп = ΣSi, где Sп - площадь боковой , Si - площадь i-ого треугольника, являющегося частью ее боковой поверхности.

Для большей ясности можно рассмотреть небольшой пример: дана правильная пирамида, боковые грани которой образованы равносторонними треугольникам, а в основании ее лежит квадрат. Длина ребра данной пирамиды составляет 17 см. Требуется найти площадь боковой поверхности данной пирамиды.

Решение: известна длина ребра данной пирамиды, известно, что грани ее - равносторонние треугольники. Таким образом, можно сказать, что все стороны всех треугольников боковой поверхности равны 17 см. Поэтому для того, чтобы рассчитать площадь любого из этих треугольников, потребуется применить формулу:

S = (17²*√3)/4 = (289*1.732)/4 = 125.137 см²

Известно, что в основании пирамиды лежит квадрат. Таким образом, понятно, что данных равносторонних треугольников четыре. Тогда площадь боковой поверхности пирамиды рассчитывается так:

125.137 см² * 4 = 500.548 см²

Ответ: площадь боковой поверхности пирамиды составляет 500.548 см²

Сначала вычислим площадь боковой поверхности пирамиды. Под боковой поверхностью подразумевается сумма площадей всех боковых граней. Если вы имеете дело с правильной пирамидой (то есть такой, в основании которой лежит правильный многоугольник, а вершина проецируется в центр этого многоугольника), то для вычисления всей боковой поверхности достаточно умножить периметр основания (то есть сумму длин всех сторон многоугольника, лежащего в основании пирамиды) на высоту боковой грани (иначе называемой апофемой) и разделить полученное значение на 2: Sб=1/2P*h, где Sб - это площадь боковой поверхности, P - периметр основания, h - высота боковой грани (апофема).

Если же перед вами произвольная пирамида, то придется отдельно вычислять площади всех граней, а затем их складывать. Поскольку боковыми гранями пирамиды являются треугольники, воспользуйтесь формулой площади треугольника: S=1/2b*h, где b - это основание треугольника, а h - высота. Когда площади всех граней вычислены, остается только сложить их, чтобы получить площадь боковой поверхности пирамиды.

Затем необходимо вычислить площадь основания пирамиды. Выбор формулы для расчета зависит от того, какой многоугольник лежит в основании пирамида: правильный (то есть такой, все стороны которого имеют одинаковую длину) или неправильный. Площадь правильного многоугольника можно вычислить, умножив периметр на радиус вписанной в многоугольник окружности и поделив полученное значение на 2: Sn=1/2P*r, где Sn - это площадь многоугольника, P - это периметр, а r - это радиус вписанной в многоугольник окружности.

Усеченная пирамида – это многогранник, который образовывается пирамидой и ее сечением, параллельным основанию. Найти площадь боковой поверхности пирамиды совсем несложно. Ее очень проста: площадь равняется произведению половины суммы оснований по . Рассмотрим пример расчета площади боковой поверхности . Допустим, дана правильная пирамида. Длины основания равны b=5 см, c = 3 см. Апофема a = 4 см. Чтобы найти площадь боковой поверхности пирамиды, нужно сначала найти периметр оснований. В большом основании он будет равен p1=4b=4*5=20 см. В меньшем основании формула будет следующей: p2=4c=4*3=12 см. Следовательно, площадь будет равна: s=1/2(20+12)*4=32/2*4=64 см.

Если в основании пирамиды лежит неправильный многоугольник, для вычисления площади всей фигуры сначала нужно будет разбить многоугольник на треугольники, вычислить площадь каждого, а затем сложить. В остальных же случаях, чтобы найти боковую поверхность пирамиды, нужно найти площадь каждой ее боковой грани и сложить полученные результаты. В некоторых случаях задача нахождения боковой поверхности пирамиды может быть облегчена. Если одна боковая грань перпендикулярна основанию или две смежные боковые грани перпендикулярны основанию, то основание пирамиды считается ортогональной проекцией части ее боковой поверхности, и они связаны формулами.

Чтобы завершить вычисление площади поверхности пирамиды, сложите площади боковой поверхности и основания пирамиды.

Пирамида – это многогранник, одна из граней которого (основание) – произвольный многоугольник, а остальные грани (боковые) – треугольники, имеющие . По числу углов основания пирамиды треугольные (тетраэдр), четырехугольные и так далее.

Пирамида является многогранником, имеющим основание в виде многоугольника, а остальные грани являются треугольниками с общей вершиной. Апофемой называется высота боковой грани правильной пирамиды, которая проведена из её вершины.

Пирамида представляет собой многогранник, в основании которого лежит многоугольник, а боковые грани - это треугольники, имеющие одну общую вершину. Площадь поверхности пирамиды равна сумме площадей боковой поверхности и основания пирамиды .

Вам понадобится

  • Бумага, ручка, калькулятор

Инструкция

Сначала вычислим площадь боковой поверхности . Под боковой поверхностью подразумевается сумма всех боковых граней. Если вы имеете дело с правильной пирамидой (то есть такой, которой лежит правильный многоугольник, а вершина проецируется в центр этого многоугольника), то для вычисления всей боковой поверхности достаточно умножить периметр основания (то есть сумму длин всех сторон многоугольника, лежащего в основании пирамиды ) на высоту боковой грани (иначе называемой ) и разделить полученное значение на 2: Sб=1/2P*h, где Sб - это площадь боковой поверхности , P - периметр основания, h - высота боковой грани (апофема).

Если же перед вами произвольная пирамида, то придется вычислять площади всех граней, а затем их складывать. Поскольку боковыми гранями пирамиды являются , воспользуйтесь формулой площади треугольника: S=1/2b*h, где b - это основание треугольника, а h - высота. Когда площади всех граней вычислены, остается только сложить их, чтобы получить площадь боковой поверхности пирамиды .

Затем необходимо вычислить площадь основания пирамиды . Выбор для расчета от того, многоугольник лежит в основании пирамида: правильный (то есть такой, все стороны которого имеют одинаковую длину) или . Площадь правильного многоугольника можно вычислить, умножив периметр на радиус вписанной в многоугольник окружности и поделив полученное значение на 2: Sn=1/2P*r, где Sn - это площадь многоугольника, P - это периметр, а r - это радиус вписанной в многоугольник окружности.

Если в основании пирамиды лежит неправильный многоугольник, то для вычисления площади всей фигуры снова придется разбивать многоугольник на треугольники, вычислять площадь каждого, а затем складывать.

Чтобы завершить вычисление площади поверхности пирамиды , сложите площади боковой поверхности и основания пирамиды .

Видео по теме

Многоугольник представляет собой геометрическую фигуру, построенную путем замыкания ломаной. Различают несколько видов многоугольника, которые отличаются в зависимости от количества вершин. Вычисление площади производится для каждого вида многоугольника определенными способами.

Инструкция

Перемножьте длины сторон, если вам необходимо вычислить площадь квадрата или прямоугольника. Если необходимо узнать площадь прямоугольного треугольника, достройте его до прямоугольника, вычислить его площадь и разделить ее на два.

Используйте для вычисления площади следующий способ, если фигура не имеет больше 180 градусов (выпуклый многоугольник), при этом все ее вершины находятся в сетки координат, а сама себя не пересекает.
Опишите вокруг такого многоугольника прямоугольник, чтобы его стороны были параллельны линиям сетки (осям координат). При этом хотя бы одна из вершин многоугольника должна быть вершиной прямоугольника.

Два основания могут быть только у усеченной пирамиды . В этом случае второе основание образуется сечением, параллельным большему основанию пирамиды . Найти одно из оснований можно в том случае, если известна или линейные элементы второго.

Вам понадобится

  • - свойства пирамиды;
  • - тригонометрические функции;
  • - подобие фигур;
  • - нахождение площадей многоугольников.

Инструкция

Если основание представляет собой правильный треугольник, найдите его площадь , умножив квадрат стороны, на корень квадратный из 3 поделенный на 4. Если основание представляет собой квадрат, возведите его сторону во вторую степень. В общем случае, для любого правильного многоугольника примените формулу S=(n/4) a² ctg(180º/n), где n – количество сторон правильного многоугольника, a – длина его стороны.

Сторону меньшего основания найдите, по формуле b=2 (a/(2 tg(180º/n))-h/tg(α)) tg(180º/n). Здесь а – большего основания, h – высота усеченной пирамиды , α – двугранный угол при ее основании, n – количество сторон оснований (оно одинаковое). Площадь второго основания найдите аналогично первому, используя в формуле длину его стороны S=(n/4) b² ctg(180º/n).

Если основания представляют собой другие типы многоугольников, известны все стороны одного из оснований , и одна из сторон другого, то остальные стороны вычислите как подобные. Например, стороны большего основания 4, 6, 8 см. Большая сторона меньшего основания рана 4 см. Вычислите коэффициент пропорциональности, 4/8=2 (берем стороны в каждом из оснований ), и рассчитайте другие стороны 6/2=3 см, 4/2=2 см. Получим стороны 2, 3, 4 см в меньшем основании стороны. Теперь вычислите их , как площади треугольников.

Если известно соотношение соответствующих элементов в усеченной , то соотношение площадей оснований будет равно отношению квадратов этих элементов. Например, если известны соответствующие стороны оснований а и а1, то а²/а1²=S/S1.

Под площадью пирамиды обычно понимается площадь ее боковой или полной поверхности. В основании данного геометрического тела лежит многоугольник. Боковые грани имеют треугольную форму. У них есть общая вершина, которая одновременно является и вершиной пирамиды .

Вам понадобится

  • - лист бумаги;
  • - ручка;
  • - калькулятор;
  • - пирамида с заданными параметрами.

Инструкция

Рассмотрите данную в задании пирамиду. Определите, правильный или неправильный многоугольник лежит в ее основании. У правильного все стороны равны. Площадь в этом случае равна половине произведения периметра на радиус . Найдите периметр, умножив длину стороны l на количество сторон n, то есть P=l*n. Выразить площадь основания можно формулой Sо=1/2P*r, где P - периметр, а r - радиус вписанной окружности.

Цилиндр представляет собой геометрическое тело, ограниченное двумя параллельными плоскостями и цилиндрической поверхностью. В статье поговорим о том, как найти площадь цилиндра и, применив формулу, решим для примера несколько задач.

У цилиндра есть три поверхности: вершина, основание, и боковая поверхность.

Вершина и основание цилиндра являются окружностями, их легко определить.

Известно, что площадь окружности равна πr 2 . Поэтому, формула площади двух окружностей (вершины и основания цилиндра) будет иметь вид πr 2 + πr 2 = 2πr 2 .

Третья, боковая поверхность цилиндра, является изогнутой стенкой цилиндра. Для того чтобы лучше представить эту поверхность попробуем преобразовать её, чтобы получить узнаваемую форму. Представьте себе, что цилиндр, это обычная консервная банка, у которой нет верхней крышки и дна. Сделаем вертикальный надрез на боковой стенке от вершины до основания банки (Шаг 1 на рисунке) и попробуем максимально раскрыть (выпрямить) полученную фигуру (Шаг 2).

После полного раскрытия полученной банки мы увидим уже знакомую фигуру (Шаг 3), это прямоугольник. Площадь прямоугольника вычислить легко. Но перед этим вернемся на мгновение к первоначальному цилиндру. Вершина исходного цилиндра является окружностью, а мы знаем, что длина окружности вычисляется по формуле: L = 2πr. На рисунке она отмечена красным цветом.

Когда боковая стенка цилиндра полностью раскрыта, мы видим, что длина окружности становится длиной полученного прямоугольника. Сторонами этого прямоугольника будут длина окружности(L = 2πr) и высота цилиндра(h). Площадь прямоугольника равна произведению его сторон – S = длина х ширина = L x h = 2πr x h = 2πrh. В результате мы получили формулу для расчета площади боковой поверхности цилиндра.

Формула площади боковой поверхности цилиндра
S бок. = 2πrh

Площадь полной поверхности цилиндра

Наконец, если мы сложим площадь всех трёх поверхностей, мы получим формулу площади полной поверхности цилиндра. Площади поверхности цилиндра равна площадь вершины цилиндра + площадь основания цилиндра + площадь боковой поверхности цилиндра или S = πr 2 + πr 2 + 2πrh = 2πr 2 + 2πrh. Иногда это выражение записывается идентичной формулой 2πr (r + h).

Формула площади полной поверхности цилиндра
S = 2πr 2 + 2πrh = 2πr(r + h)
r – радиус цилиндра, h – высота цилиндра

Примеры расчета площади поверхности цилиндра

Для понимания приведенных формул попробуем посчитать площадь поверхности цилиндра на примерах.

1. Радиус ос­но­ва­ния цилиндра равен 2, высота равна 3. Определите площадь боковой поверхности цилиндра.

Площадь полной поверхности рассчитывается по формуле: S бок. = 2πrh

S бок. = 2 * 3,14 * 2 * 3

S бок. = 6,28 * 6

S бок. = 37,68

Площадь боковой поверхности цилиндра равна 37,68.

2. Как найти площадь поверхности цилиндра, если высота равна 4, а радиус 6?

Площадь полной поверхности рассчитывается по формуле: S = 2πr 2 + 2πrh

S = 2 * 3,14 * 6 2 + 2 * 3,14 * 6 * 4

S = 2 * 3,14 * 36 + 2 * 3,14 * 24


Определение. Боковая грань - это треугольник, у которого один угол лежит в вершине пирамиды, а противоположная ему сторона совпадает со стороной основания (многоугольника).

Определение. Боковые ребра - это общие стороны боковых граней. У пирамиды столько ребер сколько углов у многоугольника.

Определение. Высота пирамиды - это перпендикуляр, опущенный из вершины на основание пирамиды.

Определение. Апофема - это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания.

Определение. Диагональное сечение - это сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания.

Определение. Правильная пирамида - это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания.


Объём и площадь поверхности пирамиды

Формула. Объём пирамиды через площадь основы и высоту:


Свойства пирамиды

Если все боковые ребра равны, то вокруг основания пирамиды можно описать окружность, а центр основания совпадает с центром окружности. Также перпендикуляр, опущенный из вершины, проходит через центр основания (круга).

Если все боковые ребра равны, то они наклонены к плоскости основания под одинаковыми углами.

Боковые ребра равны тогда, когда они образуют с плоскостью основания равные углы или если вокруг основания пирамиды можно описать окружность.

Если боковые грани наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проектируется в ее центр.

Если боковые грани наклонены к плоскости основания под одним углом, то апофемы боковых граней равны.


Свойства правильной пирамиды

1. Вершина пирамиды равноудалена от всех углов основания.

2. Все боковые ребра равны.

3. Все боковые ребра наклонены под одинаковыми углами к основанию.

4. Апофемы всех боковых граней равны.

5. Площади всех боковых граней равны.

6. Все грани имеют одинаковые двугранные (плоские) углы.

7. Вокруг пирамиды можно описать сферу. Центром описанной сферы будет точка пересечения перпендикуляров, которые проходят через середину ребер.

8. В пирамиду можно вписать сферу. Центром вписанной сферы будет точка пересечения биссектрис, исходящие из угла между ребром и основанием.

9. Если центр вписанной сферы совпадает с центром описанной сферы, то сумма плоских углов при вершине равна π или наоборот, один угол равен π/n , где n - это количество углов в основании пирамиды.


Связь пирамиды со сферой

Вокруг пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многогранник вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих перпендикулярно через середины боковых ребер пирамиды.

Вокруг любой треугольной или правильной пирамиды всегда можно описать сферу.

В пирамиду можно вписать сферу, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.


Связь пирамиды с конусом

Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.


Связь пирамиды с цилиндром

Пирамида называется вписанной в цилиндр, если вершина пирамиды лежит на одной основе цилиндра, а основание пирамиды вписано в другую основу цилиндра.

Цилиндр можно описать вокруг пирамиды если вокруг основания пирамиды можно описать окружность.


Определение. Усеченная пирамида (пирамидальная призма) - это многогранник, который находится между основанием пирамиды и плоскостью сечения, параллельной основанию. Таким образом пирамида имеет большую основу и меньшую основу, которая подобна большей. Боковые грани представляют собой трапеции.

Определение. Треугольная пирамида (четырехгранник) - это пирамида в которой три грани и основание являются произвольными треугольниками.

В четырехгранник четыре грани и четыре вершины и шесть ребер, где любые два ребра не имеют общих вершин но не соприкасаются.

Каждая вершина состоит из трех граней и ребер, которые образуют трехгранный угол .

Отрезок, соединяющий вершину четырехгранника с центром противоположной грани называется медианой четырехгранника (GM).

Бимедианой называется отрезок, соединяющий середины противоположных ребер, которые не соприкасаются (KL).

Все бимедианы и медианы четырехгранника пересекаются в одной точке (S). При этом бимедианы делятся пополам, а медианы в отношении 3:1 начиная с вершины.

Определение. Наклонная пирамида - это пирамида в которой одно из ребер образует тупой угол (β) с основанием.

Определение. Прямоугольная пирамида - это пирамида в которой одна из боковых граней перпендикулярна к основанию.

Определение. Остроугольная пирамида - это пирамида в которой апофема больше половины длины стороны основания.

Определение. Тупоугольная пирамида - это пирамида в которой апофема меньше половины длины стороны основания.

Определение. Правильный тетраэдр - четырехгранник у которого все четыре грани - равносторонние треугольники. Он является одним из пяти правильных многоугольников. В правильного тетраэдра все двугранные углы (между гранями) и трехгранные углы (при вершине) равны.

Определение. Прямоугольный тетраэдр называется четырехгранник у которого прямой угол между тремя ребрами при вершине (ребра перпендикулярны). Три грани образуют прямоугольный трехгранный угол и грани являются прямоугольными треугольниками, а основа произвольным треугольником. Апофема любой грани равна половине стороны основы, на которую падает апофема.

Определение. Равногранный тетраэдр называется четырехгранник у которого боковые грани равны между собой, а основание - правильный треугольник. У такого тетраэдра грани это равнобедренные треугольники.

Определение. Ортоцентричный тетраэдр называется четырехгранник у которого все высоты (перпендикуляры), что опущены с вершины до противоположной грани, пересекаются в одной точке.

Определение. Звездная пирамида называется многогранник у которого основой является звезда.

Определение. Бипирамида - многогранник, состоящий из двух различных пирамид (также могут быть срезаны пирамиды), имеющих общую основу, а вершины лежат по разные стороны от плоскости основания.