Что такое мутация генов при онкологии. Генетические причины развития конкретных разновидностей рака

Полиморфизм генов, передающийся из поколения в поколение, позволяет оценить риск возникновения онкологического заболевания и скорректировать лечение при уже развившемся онкологическом процессе.

Наследственный синдром рака молочной железы и/или яичников стал предметом для интенсивных исследований в начале 1990-х гг. В 1994 г. открыт первый ген, ассоциированный с данным заболеванием - BRCA1, а годом позже - второй ген - BRCA2. Гены BRCA1 и BRCA2 кодируют аминокислотные последовательности ядерных белков, которые участвуют в регуляции восстановления ДНК и деления клеток. В интактном (немутантном) состоянии оба гена выступают в качестве супрессоров опухоли и обеспечивают целостность генома. Белковые продукты генов репрессируют транскрипционную функцию гена рецептора эстрогенов, сдерживая, таким образом, избыточную пролиферацию клеток молочной железы и других эстрогензависимых органов, в частности, при половом созревании и беременности. Мутации в генах BRCA1 и BRCA2 приводят к повышению уровня хромосомной нестабильности в клетках, что может способствовать их опухолевой трансформации. На сегодняшний день известно более 1000 различных мутаций генов BRCA1 и BRCA2, связанных с повышением риска развития рака молочной железы, яичников, предстательной железы, кишечника, гортани, кожи и др. Для реализации онкогенного эффекта достаточно, чтобы мутация присутствовала хотя бы в одном аллеле. При обнаружении мутации в генах BRCA1 и BRCA2 у женщины риск развития рака молочной железы и/или яичников составляет от 50 до 80%.

Огромные усилия учёных направлены на идентификацию других генов наследственного рака молочной железы и/или яичников. В ходе этих исследований удалось обнаружить новые значимые мутации, приводящие к инактивации генов CHEK2, NBS1, PALB2, TP53, PTEN и другие. Ген CHEK2 кодирует синтез белка-фермента чекпойнт-киназы 2. Белковый продукт гена CHEK2 участвует в поддержании стабильности генома, контролирует процессы клеточного деления и репарации ДНК. Фермент активируется в ответ на повреждение молекулы ДНК, блокируя клеточный цикл в фазе G1 или запуская процесс апоптоза, выступая в качестве супрессора злокачественной трансформации клеток. Мутации гена CHEK2 приводят к синтезу неполноценного укороченного белка и ассоциированы с возникновением наследственных форм рака молочной железы.

Мутации с.1100delC, IVS2+1G>A гена CHEK2 являются наиболее распространенными. Частота аллеля 1100delC в европейской популяции составляет 1,1-1,4%. Среди российских пациентов частота встречаемости аллеля 1100delC составляет 2-5%. Риск возникновения рака молочной железы у женщин-носительниц мутации 1100delC увеличивается в 1,4-4,7 раза. Мутация IVS2+1G>A гена CHEK2 более редкая, по сравнению с c.1100delC, чаще встречается у представительниц Белоруссии, Польши, Германии и Северной Америки. Аллель IVS2+1G>A CHEK2 ассоциирован с возникновением онкологической патологии различной локализации, чаще всего встречается у больных раком молочной железы.

Мутации гена CHEK2 наследуются по аутосомно-доминантному типу, передаются из поколения в поколение с вероятностью 50%. Встречаются с одинаковой частотой у мужчин и женщин. Вероятность возникновения болезни повышается даже при наличии одной мутации в гетерозиготной форме.

Частота наследственной предрасположенности к раку молочной железы составляет около 25% всех случаев рака молочной железы.

Распространенность мутации генов BRCA1 или BRCA2 значительно различается у этнических групп в географических регионах. Специфические мутации и рецидивы мутации в зависимости от популяции описаны в Исландии, Нидерландах, Швеции, Норвегии, Германии, Франции, Испании, Канаде, странах Центральной и Восточной Европы и среди потомков евреев, выходцев из Германии. В середине 1990 х гг. обнаружено, что относительно небольшие, биологически изолированные народности характеризуются выраженным эффектом предшественника - преобладанием, так называемых повторяющихся мутаций в BRCA1 и BRCA2. Например, у евреев европейского происхождения практически все повреждения генов BRCA1 и BRCA2 сводятся к мутациям BRCA1 185delAG, BRCA1 5382insC и BRCA2 6174delT, у жителей Исландии - к аллелю BRCA2 999del5. Особенности спектра мутаций в том или ином географическом регионе в значительной мере отражаются на организации диагностики наследственного рака молочной железы. В странах без выраженного эффекта предшественника генетическому анализу подвергаются преимущественно те случаи онкологического заболевания, при которых вероятность обнаружения мутаций достаточно высока, а именно пациенты с выраженным семейным онкологическим анамнезом и/или больные с первично множественными опухолями и/или молодые женщины с раком молочной железы или раком яичников.

Методом полимеразной цепной реакции в режиме реального времени в препаратах ДНК человека, полученных из периферической крови, выявляется мутация в генах BRCA1, BRCA2, CHEK2. Обнаружение генного дефекта у клинически здоровых женщин позволяет провести своевременную диагностику в случае возникновения онкологических заболеваний молочной железы и/или яичников и предупредить их тяжелые последствия. Для пациенток с уже подтвержденным онкологическим заболеванием данное исследование дает возможность определить его возможную наследственную природу и подобрать более адекватную терапию.

Генетический анализ – путь к точному лечению

Неотъемлемой частью традиционного лечения онкологии является воздействие на весь организм с помощью химиотерапевтических препаратов. Однако клинический эффект от этого лечения не всегда бывает достаточно высок. Это случается из-за сложного механизма возникновения рака и индивидуальных различий организмов пациентов, их ответа на лечение и количество осложнений. Чтобы повысить эффективность лечения в целом, в мире начали уделять все больше внимания индивидуализации лечения.

Индивидуальному подбору лечения в онкологии стали придавать большое значение вслед за развитием и внедрением в широкую клиническую практику таргетных препаратов, а генетический анализ помогает их правильно подобрать.

Индивидуальное лечение – это, прежде всего, точное лечение конкретной опухоли. Почему лечение должно проводиться точно, обьяснять нет необходимости. Поэтому получение большего количества полезных сведений об организме дает надежду на жизнь: 76% онкопациентов имеют те или иные варианты генных мутаций. Генетические анализы помогут найти эту мишень, исключить неэффективное лечение, чтобы не потерять самое продуктивное для лечения время. А также снизить физическое и психологическое бремя пациента и его родных.

Генетические анализы при онкологии - это анализы, определяющие мутации генов, устанавливающих последовательности ДНК и РНК. Каждая опухоль имеет свой индивидуальный генетический профиль. Генетический анализ помогает подобрать препараты таргетной терапии, именно те, которые подойдут конкретно для вашей формы опухоли. И помогут сделать выбор в пользу более эффективного лечения. Например, у пациентов с немелкоклеточным раком легких при наличии мутации EGFR эффективность лечения Гефитинибом составляет 71,2%, а химиотерапии Карбоплатин+Паклитаксел 47,3%. При отрицательном значении EGFR эффективность Гефитиниба 1,1%, то есть препарат не эффективен. Анализ этой мутации напрямую дает понять, какое лечение лучше предпочесть...

Кому показан генетический анализ?

  • Больным на ранних стадиях онкологии.

С помощью генетических анализов можно точно подобрать наиболее эффективный препарат, что позволит избежать потери времени и бесполезных нагрузок на организм.

  • Больным на поздних стадиях онкологии.

Подбор эффективной таргетной терапии может значительно продлить жизнь пациентов с поздними стадиями, лечение которых традиционными методами уже не представляется возможным.

  • Больным с редкими видами рака или же с онкологией неизвестного происхождения.

В таких случаях подбор стандартного лечения представляет большую сложность, а генетические анализы позволяют подобрать точное лечение даже без определения конкретного вида рака.

  • Больным, ситуация которых не поддается лечению традиционными методами.

Это хороший выбор для пациентов, которые уже исчерпали возможности традиционного лечения, потому что генетические анализы позволяют выявить целый ряд дополнительных препаратов, которые можно применять.

  • Больным с рецидивами. Генетические анализы при рецидивах рекомендуется проверять повторно, потому что генные мутации могут измениться. И тогда по новым генетическим анализам будут подбираться новые препараты таргетной терапии.

Генетические анализы в Харбине

В Китае, стране с высокими показателями по заболеваемости онкологией, индивидуализация лечения получила широкое признание, а генетические анализы для подбора таргетной терапии прочно вошли в клиническую практику. В Харбине генетические анализы проводятся на базе отделения онкологии Хэйлунцзянской центральной больницы «Нункэн»

Наиболее информативно пройти полный комплекс генетических анализов – это секвентирование второго поколения, проводимое с помощью высокоплотного нейтронного потока. Технология генетических анализов второго поколения позволяет за один раз проверить 468 важных опухолевых генов, можно выявить все типы всех генетических участков, имеющих отношение к опухоли, обнаружить особые типы ее генных мутаций.

Комплекс включает:

  • Прямые гены для таргетных препаратов – более 80 генов

Определяются разрешенные FDA лекарственные мишени, мишени для экспериментальных лекарств.

  • Гены, определяющие пути лекарств к мишеням - более 200 генов
  • Гены, восстанавливающие ДНК - более 50 генов

Лучевая и химиотерапия, ингибиторы PARP, иммуная терапия

  • Показательные наследственные гены - около 25 генов

Имеющие отношение к некоторым мишеням и эффективности химиотерапии.

  • Другие высокочастотные мутирующие гены

Имеющие отношение к прогнозам, диагностике.

Почему нужно проверять такое большое количество показателей, если вид моего рака уже известен?

Из-за большого количества больных, китайские специалисты – онкологи традиционно пошли дальше своих коллег из других стран в развитии и применении таргетной терапии.

Исследования таргетной терапии в различных вариациях ее применения привели к интересным результатам. Разные таргетные препараты действуют на соответствующие мутации генов. Но сами генные мутации, как оказалось, далеко не так жестко привязаны к определеному виду рака.

Например, у пациента с раком печени после проведения полного комплекса генетических анализов была выявлена мутация, при которой высокий эффект показывает препарат Иресса, предназначенный для рака легкого. Лечение этого пациента препаратом для рака легкого привело к регрессу опухоли печени! Этот и другие подобные случаи придали совершенно новый смысл определению генетических мутаций.

В настоящее время проверка полного комплекса генетических анализов позволяет расширить список препаратов таргетной терапии теми лекарствами, которые изначально не предусматривались для использования, что существенно увеличивает клиническую эффективность лечения.

Генетические анализы определяются по тканям опухоли (это предпочтительнее! подойдет опухолевый материал после операции или после пункционной биопсии) или по крови (кровь из вены).

Для более точного определения генных мутаций, особенно при рецидивах, рекомендуется проводить повторную биопсию с забором нового опухолевого материала. Если биопсия практически невозможна или рискованна, тогда анализ проводят по венозной крови.

Результат готов через 7 дней . Заключение содержит не только результат, но и конкретные рекомендации с названиями подходящих препаратов.

Делеция некоторых генов может привести к нарушению регуляции клеточного роста, так что если они окажутся в гомозиготном состоянии, это может привести к развитию рака. Ген bcr вместе со своим транслокационным партнером образует комплексный белок, который вызывает постоянную экспрессию фермента тирозинкиназы - стимулятора деления клеток.

Для деактиваций супрессирующего развития опухоли гена необходимо повреждение в обоих аллелях гена, поэтому такой рецессивный механизм характерен для наследственных форм рака, когда врожденное повреждение или делеция в одной из аллелей дополняется в течение жизни повреждением парной аллели, что и ведет к развитию опухоли. В таблице представлены характерные особенности супрессирующих развитие опухоли генов, отличающие их от онкогенов.

Среди наиболее изученных заболеваний этого типа находятся , синдром Ли-Фраумени, и опухоль Вилмса. Надсон предположил, что ретинобластома развивается в две стадии, когда потеря наследуемой аллели происходит после утраты комплементарной аллели. По-видимому, утрата второй аллели происходит в процессе рекомбинации или митотического нерасхождения хромосом.

У больных ретинобластомой риск заболеть остеосаркомой повышается в 300 раз. До сих пор не ясно, почему данные опухоли так жестко рестриктированы по этим двум локализациям (кости и глаз). Ген Rb находится в хромосоме 13ql4.

Отличительные черты онкогенов и генов-подавителей опухоли

Ген опухоли Вилма расположен в 11p13 хромосоме , и, как и в случае с ретинобластомой, отсутствие этого гена периодически регистрируется у больных не наследуемыми видами рака, такими как остеосаркома. Наследуемые формы опухоли Вилма встречаются довольно редко, и у 50% людей с повреждением этого гена опухоли не развиваются. Тема не менее у части больных ненаследственными формами регистрируется делеция цепи 11р13, и исследования полиморфизма хромосомного набора показывают потерю этого хромосомного участка у 50% больных.

Развитие синдрома Ли-Фраумени обусловлено врожденной мутацией гена р53. В семьях с этой мутацией существует риск заболевания саркомой в детском возрасте, раннего развития рака молочной железы у женской половины, и повышен риск заболеваемости раком мозга, надпочечников и лейкемии у всех членов семьи. Белок р53 является ядерным фосфопротеином, регулирующим клеточный цикл. Нередко отмечаются его спорадические мутации при раках различных типов.

Гены BRCA1 и BRCA2 являются опухолесупрессирующими генами для рака молочной железы. Врожденные мутации передаются материнскими и отцовскими хромосомами 17 и 13 соответственно. Последующая утеря здоровой аллели приводит к инактивации гена. Оба этих гена кодируют белки, ответственные за репарацию ДНК и поддержание целостности генома клетки.

Потеря их активности приводит к накоплению генетических ошибок и, как следствие, к развитию рака. Мужчины с мутацией по данным генам имеют повышенный риск заболеть раком простаты.

Если у членов семьи в одном или нескольких поколениях встречается какой-то один вид опухоли или имеются различные у двух и более близких родственников, а также при поражении у пациента опухолью парных органов существует необходимость проверки наличия определенных генетических изменений, которые могут передаваться по наследству. Также генетическое исследование показано лицам, перенесшем онкологическое заболевание в детстве и рожденных с опухолью и пороками развития. Такие исследования позволяют выяснить, есть ли для появления рака в этой семье наследственные причины и определить вероятность возникновения опухоли у близких родственников.

В настоящее время представления о генетической природе развития основаны на предположении о существовании генов, нормальная функция которых связана с подавлением опухолевого роста. Такие гены были названы генами-супрессорами опухолевого роста. Дефекты этих генов приводят к прогрессии, а восстановление функции — к существенному замедлению пролиферации или даже реверсии развития опухоли.

Приведем некоторые примеры подобных генетических изменений.

Наиболее известным среди таких генов является ген RB1 . Мутации двух генов,, имеют практически равноценный вклад в возникновение наследственных форм рака молочной железы (5%). Также мутации мутации BRCA1 повышают риск возникновения рака яичников, а мутации BRCA2 предрасполагают к раку молочной железы у мужчин и раку поджелудочной железы.

Наследственная форма неполипозного развивается в результате мутаций в генах MSH2 и MLH1 . У женщин, имеющих мутацию в одном из этих генов, чаще всего возникают рак яичников и эндометрия.

Мутация в половых клетках (герминальные) в одной из аллелей гена RB1 приводит к предрасположенности к ретинобластоме. Также у пациентов, имеющих подобную мутацию, существует большой риск развития таких опухолей, как остеосаркома, лимфолейкоз, МРЛ, РМЖ, опухоли половых органов, поэтому за больными с наследственной формой заболевания необходимо наблюдение. Мутации этого гена в соматических клетках вызывают только ретинобластому, хотя нарушения функции RB1 обнаруживают во многих других опухолях, но уже как вторичные, являющиеся признаком дестабилизации генома .

Герминальные мутации гена-супрессора CDKN2A/p16 вызывают наследственные формы меланомы, синдрома диспластического невуса и атипичных родинок, опухоли поджелудочной железы, опухоли головы и шеи. При инактивации гена-супрессора WT1 может возникнуть нефробластома (это является причиной около трети от всех нефробластом), а равномерное повреждение мутацией всего гена-супрессора PTEN приводит к возникновению рака молочной железы, предстательной железы, яичников, эндометрия, щитовидной железы.

Большинство обывателей пребывает во мнении, что нет болезни хуже, чем рак. Любой врач готов оспаривать эту мысль, но общественное мнение штука консервативная.

И несмотря на то, что онко-патология занимает почетное третье место среди причин инвалидности и смерти, люди еще очень долго будут считать, что нет болезни страшнее, и искать способы, как избежать онкологии.

Известно, что любое заболевание дешевле и проще профилактировать, чем лечить, и рак не исключение. Да и само лечение, начатое в ранней стадии заболевания в разы эффективнее, чем в запущенных случаях.

Основные постулаты, которые позволят не умереть от рака:

  • Уменьшение воздействия на организм канцерогенов. Любой человек, убрав из своего быта, хотя бы часть онкогенных факторов, в состоянии снизить риск раковой патологии как минимум в 3 раза.
  • Крылатая фраза — «все болезни от нервов» для онкологии не исключение. Стресс является пусковым механизмом активного роста раковых клеток. Поэтому избегайте нервных потрясений, учитесь бороться со стрессами — медитация, йога, позитивное отношение к происходящему, метод «Ключ» и прочие психологические тренинги и настрои.
  • Ранняя диагностика и раннее лечение. считает, что рак, выявленный на начальной стадии, излечим более, чем в 90% случаев.

Механизм развития опухоли

Раковое заболевание в своем развитии проходит три стадии:

Зарождение мутации клеток — инициация

В процессе жизнедеятельности клетки наших тканей постоянно делятся, заменяя погибшие или отработанные. При делении могут возникать генетические ошибки (мутации), «клеточный брак». Мутация приводит к перманентному изменению генов клетки, воздействуя на ее ДНК. Такие клетки не превращаются в нормальные, а начинают неудержимо делиться (при наличии предрасполагающих факторов), образуя раковую опухоль. Причины мутаций бывают следующие:

  • Внутренние: генетические аномалии, гормональные сбои и т.д.
  • Внешние: радиация, курение, тяжелые металлы и т.д.

Всемирная организация здравоохранения (ВОЗ) считает, что 90% онко-заболеваний возникает под действием внешних причин. Факторы внешней или внутренней среды, воздействие которых может вызвать онкологическое заболевание и способствовать росту опухоли называются – КАНЦЕРОГЕНЫ.

Вся стадия зарождения таких клеток может занимать несколько минут — это время всасывания канцерогена в кровь, доставка его к клеткам, прикрепление к ДНК и переход в состояние активно действующего вещества. Процесс завершается, когда происходит формирование новых дочерних клеток с измененной генетической структурой — всё!

И это уже необратимо (за редким исключением), см. . Но, на этом процесс может приостановится до тех пор, пока не создадутся благоприятные условия для дальнейшего роста колонии раковых клеток, поскольку иммунная система не дремлет и борется с такими мутировавшими клетками. То есть при ослаблении иммунитета — мощный стресс, (чаще всего это потеря близких людей), тяжелое инфекционное заболевание, а также при гормональном сбое, после травмы (см. ) и пр. — организм не в силах справляться с их ростом, тогда начинается 2 этап.

Наличие благоприятных условий для роста мутирующих клеток — промоция

Это гораздо более длительный период (годы, даже десятилетия), когда вновь возникшие мутировавшие клетки, предрасположенные к раку, готовы размножаться до заметной раковой опухоли. Вот именно эта стадия может быть обратима, поскольку все зависит от того, будут ли раковые клетки обеспечены необходимыми условиями для роста. Существует достаточно много различных версий и теорий причин развития рака, среди которых — связь роста мутировавших клеток и питания человека.

К примеру, авторы Т. Кэмпбелл, К. Кэмпбелл в книге «Китайское исследование, результаты самого масштабного исследования связи питания и здоровья», приводят результаты 35 летних исследований связи онкологии и преобладанием белковой пищи в рационе. Они утверждают, что наличие в дневном рационе более 20% животных белков (мясо, рыба, птица, яйца, молочные продукты) способствует интенсивному росту раковых клеток, и наоборот, наличие в ежедневном рационе антистимуляторов (растительная пища без термической, кулинарной обработки) замедляют и даже останавливает их рост.

Согласно этой теории, следует быть весьма осторожными с различными модными сегодня белковыми диетами. Питание должно быть полноценным, с обилием овощей и фруктов. Если человек с 0-1 стадией онкологии (не зная об этом) «садится» на белковую диету (к примеру, с целью похудеть), он по сути кормит раковые клетки.

Развитие и рост — прогрессия

Третья стадия — прогрессирующий рост группы сформировавшихся раковых клеток, завоевание соседних и отдаленных тканей, то есть развитие метастазов. Этот процесс необратим, но также возможно его замедление.

Причины канцерогенеза

ВОЗ разделяет канцерогены на 3 большие группы:

  • Физические
  • Химические
  • Биологические

Науке известны тысячи физических, химических и биологических факторов, способных вызвать клеточные мутации. Однако канцерогенами могут считаться лишь те, действие которых ДОСТОВЕРНО связано с возникновением опухолей. Эта достоверность должна обеспечиваться клиническими, эпидемиологическими и иными исследованиями. Поэтому существует понятие «потенциальный канцероген», это некий фактор, действие которого теоретически может увеличить риск заболеть онкологическим заболеванием, но его роль в канцерогенезе не изучена или не доказана.

Физические канцерогены

К данной группе канцерогенов относятся в основном разного рода излучения.

Ионизирующие излучения

О том, что радиация может вызвать генетические мутации ученые знают давно (Нобелевская премия 1946 года, Джозеф Мёллер), но убедительные доказательства роли радиации в развитии опухолей ими были получены после изучения жертв ядерных бомбардировок Хиросимы и Нагасаки.

Основные источники ионизирующих излучений для современного человека следующие.

  • Естественный радиоактивный фон – 75%
  • Медицинские манипуляции – 20%
  • Прочее – 5%. Среди прочего значатся радионуклиды, оказавшиеся в окружающей среде в результате наземных испытаний ядерного оружия в середине XX века, а также попавшие в нее в после техногенных катастроф в Чернобыле и Фукусиме.

Влиять на естественный радиоактивный фон бесполезно. Современная наука не знает, может ли жить человек совсем без радиации. Поэтому не стоит доверять людям, которые советуют снижать в доме концентрацию радона (50% естественного фона) или защищать себя от космических лучей.

Другое дело рентгеновские исследования, проводимые в медицинских целях.

В СССР флюорографию легких (для выявления туберкулеза) необходимо было выполнять 1 раз в 3 года. В большинстве стран СНГ данное обследование требуется проходить ежегодно. Такая мера снизила распространение туберкулеза, но как она повлияла на общую онкологическую заболеваемость? Ответа наверно нет, потому, что этим вопросом никто не занимался.

Также, среди обывателей очень популярна компьютерная томография. По настоянию пациента ее делают кому нужно и не нужно. Однако большинство людей забывает, что КТ это тоже рентгеновское исследование, только более технологичное. Доза радиации при КТ превышает обычный рентгеновский снимок в 5 – 10 раз (см. ). Мы ни в коем случае не призывает отказаться от рентгеновских исследований. Просто подходить к их назначению необходимо очень взвешенно.

Однако есть еще обстоятельства непреодолимой силы, такие как:

  • жизнь в помещениях, построенных из фонящих материалов или ими отделанных
  • жизнь под высоковольтными линиями
  • служба на подлодках
  • работа рентгенологом и пр.

Ультрафиолетовое излучение

Считается, что моду на загар ввела в середине ХХ века Коко Шанель. Однако еще в XIX веке ученым было известно, что постоянное воздействие солнечного света старит кожу. Не просто так сельские жители выглядят старше своих городских ровесников. Они больше бывают на солнце.

Ультрафиолет вызывает рак кожи, это доказанный факт (доклад ВОЗ за 1994 год). Но особо опасен ультрафиолет искусственный – солярий. В 2003 году ВОЗ опубликовала доклад об опасениях, связанных с соляриями и о безответственности производителей данных приборов. Солярии запрещены лицам, не достигшим 18 лет в Германии, Франции, Великобритании, Бельгии, США, а в Австралии и Бразилии они запрещены полностью. Так что бронзовый загар это наверно красиво, но совсем не полезно.

Местное раздражающее воздействие

Хроническая травматизация кожи и слизистых оболочек может стать причиной развития опухоли. Некачественные зубные протезы могут вызвать рак губы, а постоянное трение одежды о родимое пятно – меланому. Не всякая родинка становится раком. Но если она находится в зоне повышенной травмоопасности (на шее – трение воротника, на лице у мужчин – травма при бритье и т.д.) стоит подумать об ее удалении.

Раздражение может быть также термическим и химическим. Любители очень горячей пищи подвергают себя риску рака ротовой полости, глотки и пищевода. Раздражающим действием обладает алкоголь, поэтому люди, предпочитающие крепкие горячительные напитки, а также спирт рискуют возникновением рака желудка.

Бытовое электромагнитное излучение

Речь идет об излучении сотовых телефонов, СВЧ-печей и Wi-Fi роутеров.

ВОЗ официально отнесла сотовые телефоны к потенциальным канцерогенам. Информация о канцерогенности СВЧ только теоретическая, а о влиянии Wi-Fi на опухолевый рост информации вовсе не существует. Как раз наоборот, исследований, демонстрирующих безопасность данных приборов больше, чем измышлений об их вреде.

Химические канцерогены

Международное агентство по изучению рака (МАИР) разделяет вещества, используемые в быту и на производствах, по их канцерогенности на следующие группы (информация приводится по состоянию на 2004 год):

  • Достоверно канцерогенные – 82 вещества. Химические агенты канцерогенность которых не вызывает сомнений.
  • Вероятно канцерогенные – 65 веществ. Химические агенты канцерогенность которых имеет весьма высокую степень доказательности.
    Возможно канцерогенные – 255 веществ. Химические агенты канцерогенность которых возможна, но подвергается сомнению.
  • Вероятно неканцерогенные – 475 веществ. Не существует доказательств канцерогенности данных веществ.
  • Достоверно неканцерогенные — химические агенты, доказано не вызывающие рак. Пока в этой группе только одно вещество – капролактам.

Обсудим наиболее значимые химические вещества вызывающие опухоли.

Полициклические ароматические углеводороды (ПАУ)

Это обширная группа химических веществ, образующихся при неполном сгорании органических продуктов. Содержаться в табачном дыме, выхлопных газах автомобилей и теплоэлектростанций, печной и иной саже, образуются при жарке пищи и термической обработке масла.

Нитраты, нитриты, нитрозосоединения

Это побочный продукт современной агрохимии. Сами по себе нитраты совершенно безвредны, но самостоятельно с течением времени, а также в результате обмена веществ в организме человека они могут превращаться в нитрозосоединения, которые в свою очередь весьма канцерогенны.

Диоксины

Это хлорсодержащие соединения, которые являются отходами химических и нефтеперерабатывающих производств. Могут входить в состав трансформаторных масел, пестицидов и гербицидов. Могут появляться при сжигании бытового мусора, в частности пластиковых бутылок или полиэтиленовой упаковки. Диоксины крайне устойчивы к разрушению, поэтому могут накапливаться в окружающей среде и организме человека, особенно «любит» дикосины жировая клетчатка. Минимизировать попадание диоксидинов в пищу возможно, если:

  • не замораживать продукты, воду в пластиковых бутылках — так токсины легко проникают в воду и продукты
  • не нагревайте продукты в пластиковых контейнерах в микроволновой печи, лучше использовать закаленное стекло или керамические контейнеры
  • не накрывайте еду полиэтиленовой пленкой при разогреве в микроволновой печи, лучше накрывайте бумажной салфеткой.

Тяжелые металлы

Металлы с плотностью большей, чем у железа. В таблице Менделеева их около 40, но для человека наиболее опасны ртуть, кадмий, свинец, мышьяк. В окружающую среду данные вещества попадают из отходов горнорудных, сталелитейных, а также химических производств, некоторое количество тяжелых металлов содержится в табачном дыме и выхлопных газах автомобилей.

Асбест

Это общее название группы тонковолокнистых материалов, содержащих в своей основе силикаты. Сам по себе асбест совершенно безопасен, но его мельчайшие волокна, попадающие в воздух, вызываю неадекватную реакцию эпителия, с которым они контактируют, становясь причиной онкологии любого органа, но чаще всего вызывает и гортани.

Пример из практики участкового терапевта : в доме, построенном из асбеста, вывезенного с территории Восточной Германии (забракованного в этой стране) статистика онкологических заболеваний в 3 раза выше, чем по другим домам. Об этой особенности «фонящего» строительного материала сообщила прораб, которая работала при строительстве этого дома (умерла от рака молочной железы после уже прооперированной саркомы пальца ноги).

Алкоголь

Согласно исследованиям ученых, алкоголь прямым канцерогенным эффектом не обладает. Однако он может выступать в качестве хронического химического раздражителя для эпителия рта, глотки, пищевода и желудка, способствуя развитию в них опухолей. Особенно опасны крепкие алкогольные напитки (свыше 40 градусов). Поэтому любители пить спирт рискуют не только .

Некоторые способы избежать влияния химических канцерогенов

Онкогенные химикаты могу влиять на наш организм разными способами:

Канцерогены в питьевой воде

Согласно данных Роспотребнадзора до 30% естественных водоемов содержат запредельные концентрации опасных для человека веществ. Также не стоит забывать про кишечные инфекции: холера, дизентерия, гепатит А и др. Поэтому воду из естественных водоемов лучше не пить даже кипяченую.

Старые, изношенные водопроводные системы (коих в СНГ до 70%) могут стать причиной попадания в питьевую воду канцерогенов из почвы, а именно нитратов, тяжелых металлов, пестицидов, диоксинов и др. Лучший способ от них защититься – использовать бытовые системы доочистки воды, а также следить за своевременной заменой фильтров в данных приборах.

Вода из естественных источников (колодцы, родники и т.д.) не может считаться безопасной, так как в почве, через которую она проходит может находиться всё, что угодно — от пестицидов и нитратов, до радиоактивных изотопов и боевых отравляющих веществ.

Канцерогены в воздухе

Основные онкогенные факторы во вдыхаемом воздухе это табачный дым, выхлопные газы автомобилей и асбестовые волокна. Чтобы не дышать канцерогенами нужно:

  • Бросить курить и избегать пассивного курения.
  • Городским жителям стоит поменьше бывать на улице в жаркий, безветренный день.
  • Избегать использования стройматериалов, содержащих асбест.

Канцерогены в пище

Полициклические углеводороды появляются в мясе и рыбе при значительном перегревании, то есть при жарке, особенно в жиру. Повторное использование кулинарных жиров значительно увеличивают в них содержание ПАУ, поэтому фритюрницы бытовые и промышленные – отличный источник канцерогенов. Опасны не только картошка-фри, беляши или жареные пирожки, купленные в ларьке на улице, но и барбекю, приготовленное собственными руками (см. ).

О шашлыке стоит сказать особо. Мясо для данного блюда готовится на горячих углях, когда дыма уже нет, поэтому ПАУ в нем не накапливаются. Главное — следить, чтобы шашлык не подгорал и не использовать в мангале средства для розжига, особенно содержащее дизельное топливо.

  • Большие количества ПАУ появляются в пище при копчении.
  • Подсчитано, что 50 граммов копченой колбасы может содержать столько же канцерогенов, сколько дым от пачки сигарет.
  • Банка шпрот наградит ваш организм канцерогенами от 60 пачек.

Гетероциклические амины появляются в мясе и рыбе при длительном перегревании. Чем выше температура и длительнее готовка – тем больше в мясе появляется канцерогенов. Отличный источник гетероциклических аминов - это куры-гриль. Также мясо, приготовленное в скороварке, будет содержать больше канцерогенов, чем просто отварное, поскольку в герметически закрытой посуде жидкость кипит на гораздо более высокой температуре, чем на воздухе — реже используйте скороварку.

Нитрозосоединения самопроизвольно образуются в овощах, фруктах и мясе из нитратов при комнатной температуре. Копчение, обжаривание и консервирование значительно усиливают этот процесс. Напротив, низкие температуры тормозят образование нитрозосоединений. Поэтому храните овощи и фрукты в холодильнике, а также старайтесь употреблять их по возможности сырыми.

Канцерогены в быту

Основной компонент дешевых моющих средств (шампуни, мыло, гели для душа, пены для ванн и т.д.) — лаурил сульфат натрия (Sodium Lauryl Sulfate -SLS или Sodium Laureth Sulfate - SLES). Некоторые специалисты считают его онкогенно опасным. Лаурил сульфат реагирует со многими компонентами косметических препаратов в результате чего образуются канцерогенные нитрозосоединения (см. ).

Основным источником микотоксинов является «жаба», которая «душит» хозяйку, когда она видит слегка подгнивший сыр, хлеб или небольшое пятно плесени на варенье. Такие продукты необходимо выбрасывать, так как удаление плесени с продуктов лишь избавляет вас от поедания самого гриба, но не от афлатоксинов, которые он уже успел выделить.

Напротив, низкие температуры замедляют выделение микотоксинов, поэтому следует шире использовать холодильники и холодные подвалы. Также не стоит употреблять подгнившие овощи и фрукты, а также продукты с истекшими сроками годности.

Вирусы

Вируса способные трансформировать зараженные клетки в раковые называются онкогенными. К ним относятся.

  • Вирус Эпштейна-Барр – вызывает лимфомы
  • Вирус гепатита «В» и «С» - могут стать причиной рака печени
  • Вирус папилломы человека (ВПЧ) – источник рака шейки матки

На самом деле онкогенных вирусов значительно больше, здесь перечислены лишь те, влияние которых на опухолевый рост доказано.

Защитой от некоторых вирусов могут стать вакцины, например, от гепатита «В» или ВПЧ. Многие онкогенные вирусы передаются половым путем (ВПЧ, гепатит «В»), поэтому, чтобы не «нагулять» себе рак, стоит избегать сексуально рискованного поведения.

Как избежать воздействия канцерогенов

Из всего сказанного вытекает несколько несложных рекомендаций, которые позволят значительно снизить влияние онкогенных факторов на ваш организм.

  • Откажитесь от курения.
  • Как женщинам избежать рака груди: , рожайте детей и долго кормите грудью, отказывайтесь от заместительной терапии гормонами в постменопаузе.
  • Употребляйте только качественный алкоголь, желательно не очень крепкий.
  • Не злоупотребляйте пляжным отдыхом, откажитесь от посещения солярия.
  • Не ешьте очень горячую пищу.
  • Кушайте меньше жареной и грилированной пищи, не используйте повторно жир со сковородок и фритюрниц. Предпочтение отдавайте вареным и тушеным продуктам.
  • Шире используйте холодильник. Не приобретайте продукты в сомнительных местах и на рынках, следите за их сроками годности.
  • Пейте только чистую воду, шире используйте бытовые фильтры водоочистки (см. ).
  • Сократите применение дешевой косметики и средств личной гигиены и бытовой химии (см. ).
  • При проведении отделочных работ дома и в офисе отдавайте предпочтение натуральным стройматериалам.

Как не заболеть раком? Повторимся - если убрать из своего быта хотя бы часть канцерогенов, можно снизить риск возникновения рака в 3 раза.