Механизмы всасывания, транспорта и распределения лекарственных веществ в организм. Транспорт и распределение лекарств Большинство лекарственных веществ всасывается путем пассивной диффузии

Распределение лекарств – это распространение лекарственных веществ по органам и тканям после их попадания в системный кровоток. Зависит главным образом от природы лекарства, интенсивности кровотока в тканях, проницаемости гистогематических барьеров, а также связывания молекул лекарства с белками плазмы крови и в тканях.

1. Природа лекарств. Определяет прежде всего возможность переноса через биологические барьеры. Наибольшее значение имеют размеры молекул и их полярность, степень ионизации. Большинство гидрофильных лекарственных веществ не проникают в клетки и распределяются в основном в плазме крови и интерстициальной жидкости. Липофильные лекарства относительно легко проникают через гистогематические барьеры, диффундируют в клетки и распределяются в организме более равномерно.

2. Кровоток. Приток крови обеспечивает доставку лекарства в ткани и таким образом влияет на скорость захвата лекарственного вещества тканями. В результате в хорошо перфузируемых тканях (например, мозг, сердце, почки) большие тканевые концентрации создаются раньше, чем в плохо перфузируемых (например, жировой, костной). Если при этом лекарство быстро элиминируется, то его концентрация в плохо перфузируемых тканях может никогда существенно и не повысится.

3. Связывание лекарств с белками плазмы. Затрудняет диффузию лекарства в периферические ткани. Это происходит вследствие того, что диффундировать через поры в капиллярах могут только свободные молекулы.

Самой большой фракцией белков в плазме крови является альбумин. Более высокое сродство альбумин проявляет к гидрофобным веществам и лекарствам, являющимся слабыми кислотами.

Связывание лекарственных веществ с белками плазмы крови процесс обратимый и не является специфичным. Лекарственные вещества, при их одновременном назначении могут конкурировать за места связывания на белковых молекулах и вытеснять друг друга.

Уменьшение связывания лекарственного вещества с белками плазмы может привести к существенному увеличению фракции его свободных молекул в крови и явиться причиной чрезмерного усиления фармакологического действия лекарства.

4. Гистогематические барьеры. Это барьеры между кровью и тканями, образованные стенкой капилляров. Не одинаковы в различных органах и тканях. Например, в ЦНС он наименее проницаем, так как в его образовании принимают участие еще и клетки нейроглии:

В целом перенос лекарственных веществ через подобного рода барьеры подчиняется закономерностям, характерным для механизмов абсорбции, описанным ранее, и зависит от природы вещества: лучше переносятся неполярные липофильные вещества, хуже – полярные, гидрофильные.

Многие лекарства в физиологических условиях не проникают через гистогематические барьеры, например, маннитол, высокомолекулярные декстраны (полиглюкин).

Через гематоэнцефалический барьер не проникают нейромедиаторы и плохо проходят полярные соединения.

5. Связывание лекарства в тканях. Способствует переходу лекарства из крови и накоплению его в тканях, так как связывание понижает концентрацию свободных молекул лекарственного вещества непосредственно в периваскулярном пространстве и таким образом поддерживает высоким градиент способных к диффузии (несвязанных) молекул вещества. Это может приводить к значительному накоплению (депонированию) лекарства в периферических тканях. При обратимом связывании лекарственное вещество может постепенно высвобождаться из депо и, при понижении его концентрации в крови, снова подвергаться распределению.

О распределении лекарств принято судить по объему распределения.

Объем распределения (V d - от Volume of distribution) связывает количество лекарства в организме с его концентрацией в плазме в соответствии со следующим уравнением: .

Количественно равен условному объему в котором следовало бы распределить все лекарство, содержащееся в организме, чтобы его концентрация в этом объеме была равна таковой в плазме.

Если лекарство имеет очень большой объем распределения, значительно превышающий физический объем тела, это означает, что лекарственное вещество в основном находится в периферических тканях в связанном состоянии. Такие лекарства не могут быть эффективно удалены из организма с помощью гемодиализа. С другой стороны, вещества, которые полностью остаются в плазме, будут иметь объем распределения равный объему плазмы (приблизительно 3 ‒ 4 литра), что характерно для высокомолекулярных соединений, не проникающих в клетки крови и через поры в капиллярах (например, гепарин).

Если Vd равен 15 л (суммарный объем плазмы крови и интерстициальной жидкости) лекарство преимущественно распределено внеклеточно, что характерно для гидрофильных веществ, таких, например, как аминогликозидные антибиотики.

При величине объема распределения порядка 40 л (объем всех жидкостей в организме) лекарство вероятнее всего находится как во внеклеточной, так и внутриклеточной жидкостях, то есть проникает через клеточные мембраны, что характерно для распределения липофильных неполярных веществ.

Величина объема распределения играет важную роль в оценке элиминации лекарственных веществ из организма (при прочих равных условиях вещество с большим Vd будет элиминироваться медленнее и наоборот), а также учитывается при определении нагрузочной дозы: нагрузочная доза = желаемая (или целевая) концентрация лекарственного вещества х Vd.

Еще по теме Транспорт и распределение лекарств в организме. Связывание лекарственных веществ белками плазмы крови. Транспорт через гистогематические барьеры. Депонирование лекарств в тканях. Объем распределения.:

  1. Связывание лекарственных средств с белками плазмы крови
  2. Значение индивидуальных особенностей организма для действия лекарственных веществ. Половые и возрастные различия в действии лекарств и причины их обусловливающие. Дозирование лекарств в зависимости от возраста. Применение лекарств у женщин во время беременности и лактации. Влияние генетических и патологических состояний организма на проявление фармакологического эффекта.
  3. Биологические барьеры и особенности распределения лекарственных средств в организме
  4. Биотрансформация лекарственных веществ в организме. Несинтетические и синтетические реакции метаболизма лекарств. Роль микросомальных ферментов печени. Эффект первого прохождения. Внепеченочный метаболизм лекарственных веществ. Понятие о «пролекарствах». Индивидуальные различия в скорости инактивации лекарств и причины их обусловливающие.

Всасывание (абсорбция) - это перенос лекарственного вещества из места введения в системный кровоток. Естественно, что при энтеральном способе введения ЛС, высвобождающееся из лекарственной формы, через эпителиальные клетки ЖКТ попадает в кровь, а затем уже распределяется по организму. Однако и при парентеральных путях введения ЛС, чтобы попасть к месту реализации своего фармакологического эффекта, должно, как минимум, пройти через эндотелий сосудов, т. е. при любом способе введения для достижения органа-мишени препарату необходимо проникнуть через разнообразные биологические мембраны эпителиальных и (или) эндотелиальных клеток.

Мембрана представлена бислоем липидов (фосфолипидов), пронизанных белками. Каждый фосфолипид имеет 2 гидрофобных «хвостика», обращенных внутрь, и гидрофильную «головку».

Существует несколько вариантов прохождения лекарственного вещества через биологические мембраны:

    Пассивная диффузия.

    Фильтрация через поры.

    Активный транспорт.

    Пиноцитоз.

Пассивная диффузия - основной механизм всасывания лекарств. Перенос лекарственных веществ осуществляется через липидную мембрану по градиенту концентрации (из области большей концентрации в область меньшей концентрации). При этом размер молекул не столь существенен как при фильтрации (рис. 2).

Рис. 2. Пассивная диффузия

Факторы, влияющие на скорость пассивной диффузии:

    Поверхность всасывания (основным местом всасывания большей части ЛС является проксимальная часть тонкого кишечника).

    Кровоток в месте всасывания (в тонком кишечнике он больше, чем в желудке, поэтому и всасывание больше).

    Время контакта ЛС с всасывательной поверхностью (при усиленной перистальтике кишечника всасывание ЛС уменьшается, при ослабленной - увеличивается).

    Степень растворимости ЛС в липидах (так как мембрана содержит липиды, то лучше всасываются липофильные (неполярные) вещества).

    Степень ионизации ЛС. Если ЛС при значениях рН, свойственных средам организма, находится главным образом в неионизированном виде, оно лучше растворимо в липидах и хорошо проникает через биологические мембраны. Если вещество ионизировано, оно плохо проникает через мембраны, но обладает лучшей водорастворимостью.

    Градиент концентрации.

    Толщина мембраны .

Жидкости организма в физиологических условиях имеют рН 7,3–7,4. Иной рН имеют содержимое желудка и кишечника, моча, воспаленные ткани и ткани в состоянии гипоксии. рН среды определяет степень ионизации молекул слабых кислот и слабых оснований (слабых оснований среди ЛС больше, чем слабых кислот) согласно формуле Гендерсона-Хассельбаха.

Для слабых кислот:

для слабых оснований:

Зная рН среды и рКа вещества (табличные данные) можно определить степень ионизации лекарства, а значит, и степень его всасывания из ЖКТ, реабсорбции или экскреции почками при разных значениях рН мочи.

Отсюда следует, что неионизированных форм атропина в кислой среде желудка значительно меньше, чем ионизированных (на 1 неионизированную форму приходится 10 7,7 ионизированных), а значит, в желудке он всасываться практически не будет.

Пример 2.

Определить, будет ли фенобарбитал (рКа 7,4) реабсорбироваться в «кислой» моче (рН 6,4). Фенобарбитал - слабое основание.

Отсюда следует, что неионизированных молекул фенобарбитала в этих условиях в 10 раз меньше, чем ионизированных, следовательно, он будет плохо реабсорбироваться в «кислой» моче и хорошо выводиться.

При передозировке фенобарбитала подкисление мочи является одним из методов борьбы с интоксикацией.

Фильтрация осуществляется через поры, имеющиеся между клетками эпидермиса слизистой оболочки ЖКТ, роговицы, эндотелия капилляров и так далее (большинство капилляров мозга не имеет таких пор (рис. 3)). Эпителиальные клетки разделены очень узкими промежутками, через которые проходят только небольшие водорастворимые молекулы (мочевина, аспирин, некоторые ионы).

Рис. 3. Фильтрация

Активный транспорт - это транспорт ЛС против градиента концентрации. Для этого вида транспорта необходимы энергетические затраты и наличие специфической системы переноса (рис. 4). Механизмы активного транспорта высокоспецифичны, они сформировались в процессе эволюции организма и необходимы для реализации его физиологических потребностей. В силу этого ЛС, проникающие через клеточные мембраны посредством активного транспорта, близки по своей химической структуре к естественным для организма веществам (например, некоторые цитостатики - аналоги пуринов и пиримидинов).

Рис. 4. Активный транспорт

Пиноцитоз . Суть его состоит в том, что переносимое вещество контактирует с определенным участком поверхности мембраны и этот участок прогибается внутрь, края углубления смыкаются, образуется пузырек с транспортируемым веществом. Он отшнуровывается от внешней поверхности мембраны и переносится внутрь клетки (напоминает фагоцитоз микробов макрофагами). Лекарственные вещества, молекулярная масса которых превышает 1000, могут войти в клетку только с помощью пиноцитоза. Таким образом переносятся жирные кислоты, фрагменты белков, витамин В 12 . Пиноцитоз играет незначительную роль во всасывании лекарств (рис. 5).

Рис. 5. Пиноцитоз

Перечисленные механизмы «работают», как правило, параллельно, но преобладающий вклад вносит обычно один из них. Какой именно - зависит от места введения и физико-химических свойств ЛС. Так, в ротовой полости и желудке, главным образом, реализуются пассивная диффузия, в меньшей степени - фильтрация. Другие механизмы практически не задействованы. В тонком кишечнике нет препятствий к реализации всех вышеуказанных механизмов всасывания. В толстом кишечнике и прямой кишке преобладают процессы пассивной диффузии и фильтрации. Они же являются основными механизмами всасывания ЛС через кожу.

Вариант 2. (неточно)

Ингаляционным путем вводят следующие лекарственные формы:

    аэрозоли (β-адреномиметики);

    газообразные вещества (летучие анестезирующие средства);

    мелкодисперсные порошки (натрия кромогликат).

Данный способ введения обеспечивает как местное (адреномиметики), так и системное (средства для наркоза) действие. Ингаляции лекарств производят с помощью специальной аппаратуры (от простейших спрей-баллончиков для самостоятельного применения больным до стационарных аппаратов). Учитывая тесный контакт вдыхаемого воздуха с кровью, а также огромную альвеолярную поверхность, скорость резорбции лекарств очень высока. Ингаляторно не применяют лекарственные средства, обладающие раздражающими свойствами. Нужно помнить, что при ингаляциях вещества сразу поступают в левые отделы сердца через легочные вены, что создает условия для проявления кардиотоксического эффекта.

Преимущества способа:

    быстрое развитие эффекта;

    возможность точного дозирования;

    отсутствие пресистемной элиминации.

Недостатки способа:

    необходимость использования сложных технических устройств (наркозные аппараты);

    пожароопасность (кислород).

ОСНОВНЫЕ МЕХАНИЗМЫ ВСАСЫВАНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ (ЛС)

Всасывание - это процесс поступления ЛС из места введения в кровь. Всасывание лекарственного вещества зависит от пути введения его в организм, лекарственной формы, физико-химических свойств (растворимости в липидах или гидрофильности вещества), а также от интенсивности кровотока в месте введения.

ЛС, принятые перорально, подвергаются всасыванию, проходя через слизистую оболочку желудочно-кишечного тракта, что определяется их растворимостью в липидах и степенью ионизации. Различают 4 основные механизма всасывания: диффузия, фильтрация, активный транспорт, пиноцитоз.

Пассивная диффузия осуществляется через клеточную мембрану. Всасывание происходит до тех пор, пока концентрация лекарственного вещества по обе стороны биомембраны не сравняется. Подобным образом всасываются липофильные вещества (например, барбитураты, бензодиазепины, метопролол и др.), причем чем выше их липофильность, тем активнее их проникновение через клеточную мембрану. Пассивная диффузия веществ идет без затраты энергии по градиенту концентрации.

Облегченная диффузия - это транспорт лекарственных веществ через биологические мембраны с участием молекул специфических переносчиков. При этом перенос лекарства осуществляется также по градиенту концентрации, но скорость переноса при этом значительно выше. Например, таким образом всасывается цианокобаламин. В осуществлении его диффузии участвует специфический белок - гастромукопротеид (внутренний фактор Кастла), образующийся в желудке. Если продукция этого соединения нарушена, то снижается всасывание цианокобаламина и, как следствие этого, развивается пернициозная анемия.

Фильтрация осуществляется через поры клеточных мембран. Этот механизм пассивного всасывания идет без затраты энергии и осуществляется по градиенту концентрации. Характерен для гидрофильных веществ (например, атенолол, лизиноприл и др.), а также ионизированных соединений.

Активный транспорт осуществляется с участием специфических транспортных систем клеточных мембран. В отличие от пассивной диффузии и фильтрации активный транспорт процесс энергозатратный и способен осуществляться против градиента концентрации. В данном случае несколько веществ могут конкурировать за один и тот же транспортный механизм. Способы активного транспорта обладают высокой специфичностью, поскольку сформировались в процессе длительной эволюции организма для обеспечения его физиологических потребностей. Именно эти механизмы являются основными для осуществления доставки в клетки питательных веществ и выведения продуктов обмена.

Пиноцитоз (корпускулярная абсорбция или пенсорбция) представляет также разновидность всасывания с затратой энергии, осуществление которого возможно против градиента концентрации. При этом происходит захват лекарственного вещества и инвагинация клеточной мембраны с образованием вакуоли, которая направляется к противоположной стороне клетки, где происходит экзоцитоз с высвобождением лекарственного соединения.

РАСПРЕДЕЛЕНИЕ ЛС В ОРГАНИЗМЕ: БИОЛОГИЧЕСКИЕ БАРЬЕРЫ

Попадая в системный кровоток, ЛС начинает распределяться по различным органам и тканям организма. Большинство лекарств распределяются по организму неравномерно. Характер распределения определяется многими условиями: растворимостью, комплексообразованием с белками плазмы крови, интенсивностью кровотока в отдельных органах и т.д. С учетом этого наибольшие концентрации лекарственного вещества в первые минуты после абсорбции создаются в органах, имеющих наиболее активное кровоснабжение, таких как сердце, печень, почки. Медленнее препараты проникают в мышцы, кожу, жировую ткань. Однако действие лекарственных веществ на тот или иной орган или ткань определяется главным образом не его концентрацией, а чувствительностью к ним этих образований. Сродство лекарственных веществ к биологическим субстратам и определяет специфичность их действия.

Существуют определенные трудности для проникновения лекарственных соединений через гематоэнцефалический барьер (ГЭБ), что связано со спецификой строения капилляров мозга. Через ГЭБ хорошо проникают липофильные соединения, а вот гидрофильные не в состоянии его преодолеть. При некоторых заболеваниях мозга (менингит, травма и т.п.) проницаемость ГЭБ повышается, и через него могут проникать значительно большие количества ЛС.

Проникновению лекарств в мозг способствует также нарастание уровня остаточного азота крови, т.к. при этом повышается проницаемость ГЭБ и увеличивается свободная фракция лекарственного вещества, вытесненного из комплекса с белком. У новорожденных и детей грудного возраста проницаемость ГЭБ значительно выше, чем у взрослых, поэтому у них даже плохо растворимые в липидах вещества скорее и легче преодолевают «пограничный барьер» и обнаруживаются в более высоких концентрациях в тканях мозга. Еще более высокая проницаемость ГЭБ характерна для плода, поэтому концентрация некоторых ЛС в ликворе плода может достигать таких же значений, как и в материнской крови, что способно привести к патологии головного мозга ребенка.

Избирательная проницаемость характерна и для плацентарного барьера. Через него легко проходят липофильные вещества. Соединения со сложной структурой, высокомолекулярные, белковые вещества через плацентарный барьер не проникают. В то же время его проницаемость значительно изменяется по мере нарастания срока беременности.

Некоторые ЛС имеют повышенное сродство к определенным тканям организма, а поэтому в них происходит их накопление и даже фиксация на продолжительное время. Например, тетрациклины накапливаются в костной ткани и зубной эмали и остаются там в течение длительного времени. Липофильные соединения создают высокие уровни концентрации в жировой ткани и могут задерживаться в ней.

СВЯЗЫВАНИЕ ЛС С БЕЛКАМИ КРОВИ И ТКАНЕЙ

Попав в системный кровоток, ЛС присутствуют там в двух фракциях - свободной и связанной. Лекарства способны взаимодействовать и формировать комплексы с альбуминами, в меньшей степени - с кислыми альфа1-гликопротеинами, липопротеинами, гамма-глобулинами и форменными элементами крови (эритроцитами и тромбоцитами).

Связь лекарственного вещества с белками плазмы приводит к тому, что проникновение его в различные органы и ткани резко снижается, ибо через клеточные мембраны проходит лишь свободный препарат. Ксенобиотики, связанные с белком, не взаимодействуют с рецепторами, ферментами и не проникают через клеточные барьеры. Свободная и связанная фракции ЛС находятся в состоянии динамического равновесия - по мере снижения фракции свободного вещества лекарственное средство высвобождается из связи с белком, в результате чего концентрация вещества снижается.

Связывание лекарственных веществ с белками плазмы крови оказывает влияние на распределение их в организме, скорость и длительность действия. Если ЛС обладает низкой способностью комплексообразования с белками плазмы (? 50%), оно быстро распределяется в организме, достигает того органа или системы, на который должно проявить свое действие, и вызывает достаточно быстрый терапевтический эффект. Однако подобные лекарства быстро удаляются из организма, с чем связано их непродолжительное действие. Напротив, вещества, обладающие высоким сродством к белкам плазмы (? 90%), долгое время циркулируют в кровеносном русле, плохо и медленно проникают и накапливаются в тканях, а поэтому терапевтические уровни их в тканях создаются медленно и эффект развивается постепенно. Но такие вещества медленно элиминируют из организма, тем самым обеспечивая продолжительное лечебное действие. На этом, например, основано получение сульфаниламидных средств с пролонгированным эффектом.

ВЫВЕДЕНИЕ ЛС. БИОТРАНСФОРМАЦИЯ

Выведение (элиминация) ЛС - это сложный процесс удаления лекарства из организма, включающий в себя его нейтрализацию (биотрансформацию или метаболизм) и собственно экскрецию.

При характеристике элиминации различают пресистемную элиминацию и системную элиминацию. Как мы уже указывали («РА», 2006, №8), пресистемный метаболизм, или эффект первичного прохождения, - это биотрансформация лекарственного вещества при первичном прохождении печени после его всасывания. Системная элиминация - удаление ксенобиотика после его попадания в системный кровоток.

Биотрансформация (метаболизм) - комплекс физико-химических и биологических превращений ЛС, в результате которого образуются гидрофильные соединения, легче выводимые из организма и, как правило, проявляющие менее выраженное фармакологическое действие (либо полностью его лишенные). Поэтому в процессе метаболизма лекарственные вещества обычно теряют свою активность, но становятся более удобными для удаления из организма почками. Некоторые высокогидрофильные ионизированные соединения (например, хондроитин, глюкозамин и др.) могут не подвергаться в организме биотрансформации и выводиться в неизмененном виде.

В то же время имеется небольшое количество препаратов, биотрансформация которых приводит к образованию более активных метаболитов, чем исходное соединение. На эффекте первичного прохождения основано действие пролекарств (например, дезлоратадина, фамцикловира, периндоприла и др.), т.е. веществ, которые превращаются в фармакологически активные ЛС только после пресистемного метаболизма. Биотрансформация лекарств может осуществляться в печени, стенке кишечника, почках и других органах.

Различают метаболические реакции лекарственных веществ двух типов - несинтетические и синтетические.

Несинтетические реакции в свою очередь бывают:

Микросомальные - катализируемые ферментами эндоплазматического ретикулума;
- немикросомальные - катализируемые ферментами иной локализации (реакции окисления, восстановления и гидролиза).

В основе синтетических реакций лежит конъюгация лекарственных веществ с эндогенными соединениями или химическими группировками (глюкуроновая кислота, глутатион, сульфаты, глицин, метильные группы и др.). В процессе конъюгации, например, происходит метилирование гистамина и катехоламинов, ацетилирование сульфаниламидов, комплексообразование с глюкуроновой кислотой морфина, взаимодействие с глутатионом парацетамола и др. В результате синтетических метаболических реакций молекула препарата становится более полярной и легче выводится из организма.

МАГИСТРАЛЬНЫЕ ПУТИ ЭЛИМИНАЦИИ

Лекарственные вещества и их метаболиты покидают организм различными путями, основными из которых являются почки и ЖКТ (с калом). Меньшую роль играет выведение с выдыхаемым воздухом, потом, слюной, слезной жидкостью.

Почки выводят лекарственные вещества путем клубочковой фильтрации и канальцевой секреции, хотя большое значение имеет и процесс реабсорбции веществ в почечных канальцах.

При почечной недостаточности клубочковая фильтрация значительно понижается, что приводит к замедлению выведения ЛС из организма и увеличению его концентрации в крови. В связи с этим при прогрессирующей уремии дозу таких веществ во избежание развития токсических эффектов следует снижать. Выведение лекарственных средств почками зависит от рН мочи. Поэтому при щелочной реакции мочи быстрее выводятся вещества со слабокислыми свойствами, а при кислой реакции мочи - с основными.

Ряд препаратов (пенициллины, тетрациклины, дифенин и др.) в неизмененном виде или в форме метаболитов поступают в желчь, а затем в составе желчи выделяются в двенадцатиперстную кишку. Часть препарата с содержимым кишечника выводится наружу, а часть подвергается повторной абсорбции и снова поступает в кровь и печень, затем в желчь и опять в кишечник. Подобный цикл получил название энтерогепатической циркуляции.

Газообразные и летучие вещества могут выводиться легкими. Этот способ выведения характерен, например, для ингаляционных наркотизирующих веществ.

Препараты могут выделяться из организма слюнными железами (иодиды), потовыми железами (дитофал), железами желудка (хинин), слезными железами (рифамицин).

Большое значение имеет способность некоторых лекарственных средств выводиться с молоком лактирующих женщин. Обычно концентрация препарата в молоке недостаточна, чтобы оказать неблагоприятное действие на новорожденного. Но есть и такие ЛС, которые создают достаточно высокие концентрации в молоке, что может представлять опасность для ребенка. Информация относительно выведения различных лекарств с молоком весьма скудная, поэтому назначать препараты кормящим женщинам надо с особой осторожностью.

Наконец, необходимо указать, что интенсивность выведения лекарств из организма может быть описана количественными параметрами, служащими немаловажным элементом в оценке эффективности препаратов. К таким параметрам относятся:

а) период полувыведения (Т1/2) - время, необходимое для снижения концентрации лекарственного средства в плазме крови в 2 раза. Этот показатель находится в прямой зависимости от константы скорости элиминации;

б) общий клиренс лекарственного средства (Clt) - объем плазмы крови, очищаемый от лекарственного вещества за единицу времени (мл/мин.) за счет выведения почками, печенью и т.д. Общий клиренс равняется сумме почечного и печеночного клиренса;

в) почечный клиренс (Clr) - выведение лекарства с мочой;
г) внепочечный клиренс (Cler) - выведение лекарства иными путями (прежде всего с желчью).

лекарственный антиаритмический сократительный матка

Механизмы всасывания лекарственных веществ в организме.

Всасывание - процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами:

  • а) лекарственной формой (таблетки, свечи, аэрозоли);
  • б) растворимостью в тканях;
  • в) кровотоком в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

1) Пассивная диффузия . Таким путем проникают хорошо растворимые в липоидах лекарственные вещества. Диффузия происходит прямо через мембраны клеток по градиенту концентрации путем растворения в липидах мембран. Это наиболее значимый механизм, так как для большинства лекарств характерна существенно большая растворимость в липидах, чем в воде. Таким образом, для осуществления всасывания (абсорбции) по второму пути пассивной диффузии лекарство должно быть липофильно, то есть должно быть со слабой степенью ионизации. Другими словами, оно должно быть мало ионизировано, недиссоциировано.

Установлено, что если лекарственное вещество при значениях pH, свойственных средам организма, находится главным образом в неионизированном виде (то есть в липофильной форме), оно лучше растворимо в липидах, чем в воде и хорошо проникает через биологические мембраны.

И наоборот, если вещество ионизировано, оно плохо проникает через мембраны клеток в различные органы и ткани, но обладает лучшей водорастворимостью.

Таким образом, скорость и степень всасывания лекарств, например, в желудке и кишечнике зависят от того, является ли вещество преимущественно водорастворимым (ионизированным, диссоциированным) или жирорастворимым (неионизированным), а это во многом определяется тем, является ли оно (лекарство) слабой кислотой или слабым основанием.

Зная физико-химические свойства лекарственных средств и характеристику процессов проникновения ксенобиотика через различные тканевые барьеры, можно предсказать, как тот или иной препарат будет всасываться в кровь, распределяться в органах и тканях, выводиться из организма.

Лекарственные средства со свойствами сильных кислот или щелочей при pH крови и содержимого кишечника находятся в ионизированной форме и поэтому плохо абсорбируются. Например, стрептомицин, канамицин являются препаратами, обладающими свойствами сильных щелочей, поэтому всасывание их из желудочно-кишечного тракта незначительно и непостоянно. Отсюда вывод, что такие лекарства нужно вводить только парентерально.

Замечено, что всасывание лекарств снижается, замедлятся при усилении перистальтики кишечника, а также при: диареи (поносе). Изменяется абсорбция и под влияние средств, снижающих двигательную активность кишечника, например, под влиянием холинолитических средств (препараты группы атропина).

Воспалительные процессы слизистой кишечника, ее отек также сопровождаются угнетением абсорбции лекарственных средств, например резко снижается всасывание, гипотиазида у больных с застойной недостаточностью сердца.

На абсорбцию влияет и химико-физическое строение лекарственного вещества. Например, некоторые четвертичные аммониевые соединения (содержащие четырехвалентный атом азота N), являющиеся курареподатными препаратами (тубокурарин, анатруксоний, дитилин и др.) - миорелаксантами, совершенно не проникают через липидный слой клеток, а поэтому их необходимо вводить только внутривенно.

На всасывание препарата влияет и размер его частиц. Таблетки, состоящие из больших агрегатов активного вещества, даже при длительном пребывании в ЖКТ плохо распадаются и поэтому плохо всасываются. Лекарственные вещества в дисперсной форме или эмульгированные всасываются лучше.

2) Активный транспорт . В этом случае перемещение веществ через мембраны происходит с помощью транспортных систем, содержащихся в самих мембранах;

Активный транспорт предполагает, что всасывание происходит с помощью специальных носителей (облегченное всасывание) - переносчиков, то есть оно предполагает перенос некоторых веществ через клеточные мембраны с помощью имеющихся в них белковых переносчиков (белков-ферментов или транспортных белков). Так осуществляется перенос аминокислот (сахаров, пиримидиновых оснований) через гематоэнцефалический барьер, плаценту, слабых кислот - в проксимальных канальцах почек.

Активный транспорт - осуществляется специальными носителями с потреблением энергии и может протекать против градиента концентрации; для данного механизма характерны избирательность, конкуренция двух веществ за один носитель и «насыщаемость», то есть достижение максимальной скорости процесса, лимитируемой количеством носителя и не увеличивающейся при дальнейшем повышении концентрации абсорбируемого вещества; таким способом всасываются гидрофильные полярные молекулы, ряд неорганических ионов, сахаров, аминокислот и др.;

Важно помнить, что влиять на активный транспорт мы практически не можем.

  • 3) Фильтрация (конвекционный транспорт) - прохождение молекул лекарственного вещества через поры мембран, что имеет достаточно ограниченное значение в связи с незначительной величиной пор (в среднем до 1 нм); кроме величины молекул фильтрация зависит от их гидрофильности, способности к диссоциации, соотношения заряда частиц и пор, а также от гидростатического, осмотического и онкотического давлений; таким путем всасываются вода, некоторые ионы и мелкие гидрофильные молекулы;
  • 4) Пиноцитоз . Лекарственные средства, молекулярная масса которых превышает 1000 дальтон, могут войти в клетку только с помощью пиноцитоза, то есть поглощения внеклеточного материала мембранными везикулами. Данный процесс особенно важен для лекарственных средств полипептидной структуры, а также, по-видимому, комплекса цианокобаламина (витамин В-12) с внутренним фактором Касла.

Перечисленные механизмы абсорбции (всасывания) «работают», как правило, параллельно, но преобладающий вклад вносит обычно один из них (пассивная диффузия, активный транспорт, фильтрация, пиноцитоз). Так, в ротовой полости и в желудке главным образом реализуется пассивная диффузия, в меньшей степени - фильтрация. Другие механизмы практически не задействованы.

В тонком кишечнике нет препятствий для реализации всех механизмов всасывания; какой из них доминирует, зависит от лекарственного средства.

В толстом кишечнике и прямой кишке преобладают процессы пассивной диффузии и фильтрации. Они же являются основными механизмами всасывания лекарственных средств через кожу.

Применение любого лекарства с лечебной или профилактической целью начинается с его введения в организм или нанесения на поверхность тела. От путей введения зависят скорость развития эффекта, его выраженность и продолжительность.

Распределение и транспорт лекарственных веществ в организме

После абсорбции лекарственные вещества попадают, как правило, в кровь, а затем разносятся в разные органы и ткани. Характер распределения лекарственного средства определяется множеством факторов, в зависимости от которых лекарство будет распределяться в организме равномерно или неравномерно. Следует сказать, что большинство лекарственных средств распределяется неравномерно и лишь незначительная часть - относительно равномерно (ингаляционные средства для наркоза). Наиболее важными факторами, влияющими на характер распределения лекарственного средства, являются:

  • 1) растворимость в липидах,
  • 2) степень связывания с белками плазмы крови,
  • 3) интенсивность регионарного кровотока.

Растворимость в липидах лекарственного средства определяет способность его проникать через биологические барьеры. Это прежде всего, стенка капилляров и клеточные мембраны, являющиеся основными структурами различных гистогематических барьеров, в частности, таких как, гематоэнцефалический и плацентарный барьеры. Неионизированные жирорастворимые лекарственные средства легко проникают через клеточные мембраны и распределяются во всех жидких средах организма. Распределение лекарственных средств, плохо проникающих через клеточные мембраны (ионизированные лекарственные вещества), осуществляется не столь равномерно.

Проницаемость ГЭБ возрастает при повышении осмотического давления плазмы крови. Различные заболевания могут изменять распределение лекарств в организме. Так развитие ацидоза может способствовать проникновению в ткани лекарств - слабых кислот, которые меньше диссоциируются в таких условиях.

Иногда распределение лекарственного вещества зависит от сродства препарата к тем или иным тканям, что приводит к их накоплению в отдельных органах и тканях. В качестве примера можно назвать образование тканевого депо в случае использования препаратов, содержащих йод (J) в тканях щитовидной железы. При использовании тетрациклинов последние могут избирательно накапливаться в костной ткане, в частности, зубах. Зубы в таком случае, особенно у детей, могут приобрести желтую окраску.

Такая избирательность действия обусловлена сродством тетрациклинов к биологическим субстратам костной ткани, а именно образованием

тетрациклинкальциевых комплексов по типу хелатов (hela - клешня рака). Данные факты важно помнить, особенно педиатрам и акушер-гинекологам.

Некоторые препараты могут в больших количествах накапливаться внутри клеток, образуя клеточные депо (акрихин). Происходит это за счет связывания лекарственного вещества с внутриклеточными белками, нуклепротеидами, фосфолипидами.

Некоторые средства для наркоза в силу своейлипофильности могут образовывать жировые депо, что также следует учитывать.

Депонируются лекарственные средства, как правило, за счет обратимых связей, что в принципе, определяет продолжительность их нахождения в тканевых депо. Однако если образуются стойкие комплексы с белками крови (сульфадиметоксин) или тканей (соли тяжелых металлов), то нахождение этих средств в депо существенно удлиняется.

Следует также иметь ввиду, что после всасывания в системный кровоток большая часть лекарственного вещества в первые минуты попадает в те органы и ткани, которые наиболее активно перфузируются кровью (сердце, печень, почки). Медленнее происходит насыщение лекарственным средством мышц, слизистных оболочек, кожи и жировой ткани. Для достижения терапевтических концентраций лекарственных веществ в этих тканях требуется время от нескольких минут до нескольких часов.

От пути введения лекарственного средства во многом зависит, сможет ли оно попасть к месту действия (в биофазу) (например, в очаг воспаления) и оказать лечебный эффект.

Прохождение лекарственных средств через пищеварительный тракт тесно связано с их растворимостью в липидах и ионизацией. Установлено, что при приеме лекарственных веществ внутрь скорость их абсорбции в различных отделах ЖКТ неодинакова. Пройдя через слизистую оболочку желудка и кишечника, вещество поступает в печень, где под действием ферментов печени подвергается значительным изменениям. На процесс всасывания лекарства в желудке и кишечнике оказывает влияние рН. Так, в желудке рН 1-3, что способствует более легкому всасыванию кислот, а повышение в тонкой и толстой кишках рН до 8 оснований. В то же время в кислой среде желудка некоторые препараты могут разрушаться, например бензилпенициллин. Ферменты ЖКТ инактивируют белки и полипептиды, а соли желчных кислот могут ускорить всасывание лекарств или замедлить, образуя нерастворимые соединения. На скорость всасывания в желудке влияют состав пищи, моторика желудка, интервал времени между едой и приемом препаратов. После введения в кровеносное русло лекарство распределяется по всем тканям организма, при этом важны растворимость его в липидах, качество связи с белками плазмы крови, интенсивность регионарного кровотока и другие факторы. Значительная часть лекарства в первое время после всасывания попадает в органы и ткани, наиболее активно кровоснабжающиеся (сердце, печень, легкие, почки), а мышцы, слизистые оболочки, жировая ткань и кожные покровы насыщаются лекарственными веществами медленно. Водорастворимые препараты, плохо всасывающиеся в пищеварительной системе, вводятся только парентерально (например, стрептомицин). Жирорастворимые препараты (газообразные анестетики) быстро распределяются по всему организму.

Свободная Большинство лекарственных веществ в плазме крови лишь и связанная частично находится в свободном виде, остальная же часть свя- форма ЛВ зана с белками-переносчиками. Это связывание имеет обратимый характер и может быть описано схемой:

В соответствии со схемой (2.3) можно определить степень связывания лекарственного препарата как:

Чем больше степень связывания, тем меньше свободного препарата находится в плазме крови и тем меньше вызываемый им терапевтический эффект, т.к. связанный с белком-перено- счиком препарат не может взаимодействовать с эффекторны- ми системами (в частности, рецепторами), т.е. он выполняет роль депо.
Транспорт лекарственных веществ - важный процесс. Кроме того, различные низкомолекулярные биологически активные вещества распространяются в организме, достигая мест своего действия и органов выделения с помощью кровотока. Циркуляция транспортируемого вещества в крови создает условия для его системного действия, причем длительность этого действия часто коррелирует с продолжительностью присутствия препарата в русле крови.
Характер взаимодействия лекарств с транспортными системами крови определяет их фармакологическую активность и селективное накопление в том или ином органе. Несвязанная фракция лекарственного препарата поступает в эфферентные органы и ткани и подвергается метаболизму, тогда как связанная фракция лишь выполняет роль резерва для действующего вещества. Схема влияния белков-перено- счиков на фармакокинетику лекарственных препаратов представлена на рис. 2.4.


Рис. 2.4. Влияние транспортных белков на фармакокинетику лекарственных средств

Только для ряда лекарств существуют специфические белки- переносчики. В качестве примеров специфических транспортных белков можно привести: тироксинсвязывающий глобулин для гормонов щитовидной железы, транскортин для кортизола, кортикостерона и прогестерона, секс-стероидсвязыва- ющий глобулин для тестостерона и эстрадиола, трансферрин для железа и т.д.
Большинство лекарственных веществ не имеют специфических транспортеров в плазме крови, их молекулы транспортируются за счет связывания с неспецифическими транспортными белками плазмы крови, в первую очередь альбуминами. В качестве других неспецифических транспортеров могут выступать клетки крови, в основном эритроциты и тромбоциты.
Сывороточный альбумин
Сывороточный альбумин обладает уникальной способностью связывать практически все экзогенные и эндогенные низкомолекулярные вещества, что, вероятно, обусловлено структурными особенностями молекулы. Интересно отметить, что комплексообразование альбумина с лекарственными веществами приводит к увеличению гидрофобности последних. Это также можно рассматривать как один из факторов, способствующих задержке (депонированию) ЛВ в организме*.
Неспецифический характер связывания ЛВ с альбумином не следует понимать так, будто комплексообразование не зависит от структуры молекулы действующего вещества. Очень часто такая зависимость имеется; иногда введение полярных групп даже усиливает сродство лекарственных веществ к альбумину, а для бензодиазепинов и триптофана взаимодействие с сывороточным альбумином стереоспецифично. Наличие полярных остатков в молекуле лекарственного вещества обуславливает выраженное комплексообразование с молекулой альбумина. В табл. 2.2 перечислены лекарственные вещества, которые при введении в организм в терапевтических дозах более чем на 80% связываются с сывороточным альбумином.
Сывороточный альбумин обладает уникальной способностью связывать многие низкомолекулярные ЛВ. На альбумине обнаруживается по меньшей мере несколько участков связывания лекарств (табл. 2.3). Вещества, связывающиеся с одним и тем же участком, могут вытеснять другие соединения, что приводит к изменению их концентрации в плазме крови. Выделяют следующие основные связывающие участки сывороточного альбумина человека4:

  1. Участок, связывающий жирные кислоты (олеиновую, пальмитиновую, стеариновую, линолеиновую и другие длиноцепочечные жирные кислоты). Эти кислоты нерастворимы в плазме крови при физиологических значениях рН. Связывание жирных кислот с альбумином имеет значение не только для их транспорта, но и для стабильности
  • Как будет показано в гл. 3, из организма легче выводятся гидрофильные вещества.

альбумина: обезжиренный альбумин неустойчив. На альбумине обнаружено несколько участков, связывающих жирные кислоты с разной степенью специфичности. Вероятно, эти участки не могут связывать другие соединения.

  1. Билирубин-связывающий участок. Непрямой билирубин, образующийся при разрушении гемоглобина, нерастворим в воде. Его транспорт в крови осуществляется альбумином, который имеет несколько связывающих участков для него с разной степенью сродства. Связывание билирубина с альбумином изменяет конформацию последнего, что приводит к изменению его сродства к другим транспортируемым молекулам. Многие лекарственные вещества (варфарин, сульфаниламиды, стероидные гормоны, органические красители, жирные кислоты, рентгеноконтрастные средства и др.) могут вытеснять билирубин из его комплекса с альбумином, что увеличивает его концентрацию в плазме крови. Повышение концентрации непрямого билирубина может сопровождаться симптомами интоксикации и надпеченоч- ной желтухи.
  2. Варфарин-связывающий участок абсорбирует многие эндогенные низкомолекулярные соединения и ЛВ. Связывающая способность участка обладает выраженной стереоспецифичностью, так, L(-)- и R(+)-фенпрокумон имеют различное сродство к этому участку. Основными ЛС, связывающимися варфарин-связывающим участком, являются: варфарин, тестостерон, кортизол, клорфибрат, производные гомопиримидазола, бромсульфталеин, билигност, трийотраст.
  3. Индол-связывающий участок образует комплексы с триптофаном, L-тироксином, бензодиазепиновыми транквилизаторами, ибупрофеном, пенициллинами. Бензодиазепины могут вытеснять другие ЛВ, а также триптофан из их комплекса с сывороточным альбумином, повышая тем самым их концентрацию в плазме крови.

  4. Таблица 2.2. Связывание некоторых лекарственных веществ с альбуминами3


Препарат

Свободная фракция, %

Препарат

Свободная фракция, %

Амитриптилин

4

Тиопентал натрия

13

Варфарин

3

Толбутамид

1

Дезипрамин

8

Фенилбутазон

1

Диазепам

1

Фенопрофен

1

Дигитоксин

10

Фенитоин

9

Доксициклин

7

Фуросемид

3

Имипрамин

4

Хинидин

11

Индометацин

3

Хлордиазепоксид

5

Клофибрат

10

Хлорпропамид

4

Сульфадиметоксин

10

Этакриновая
кислота

10

Сульфинпиразон

5

    Таблица 2.3. Лекарственные вещества, взаимодействующие с различными участками сывороточного альбумина


Билирубин- связывающий участок

Варфарин-
связывающий участок

Индол-
связывающий участок

Альдостерон

Билигност

Диазепам

Бромсульфталеин

Бромсульфталеин

Ибупрофен

Варфарин

Варфарин

Индометацин

Гидрокортизон

Кортизол

Оксазепам

Дезоксикортикостерон

Клорфибрат

Производные пенициллина

Иодипамид

Производные гомопиримидазола

L-тироксин

Кортикостерон

Тестостерон

Хлордиазепоксид

Сульфаниламиды

Эндографин

Флубипрофен

Эстрадиол


  • Итак -
  1. Наиболее часто ЛВ связываются с сывороточным альбумином, так как его содержание в крови и связывающая емкость значительно выше по сравнению с другими транспортными белками - Р-глобулинами и кислыми гликопротеинами.
  2. Выраженное нарушение связывания ЛВ наблюдается при снижении концентрации альбуминов в крови (гипоальбу- минемия).
Влияние связывания с белками на режимы дозирования
  • лекарственных веществ
Факторы, В общем случае степень связывания лекарственных препара- определяющие тов с сывороточным альбумином и другими белками плазмы степень связывания крови определяется следующими факторами:
ЛВ белками крови химической структурой лекарственного вещества;

концентрацией лекарственного вещества. Так как транспортные системы крови имеют ограниченную емкость, то чрезмерное повышение концентрации ЛВ приводит к уменьшению степени связывания, увеличению свободной фракции и вероятности развития побочных эффектов (рис. 2.5а);
концентрацией альбумина. Чем больше концентрация альбумина, тем больше лекарственного препарата связывается им (рис. 2.5б). Гипоальбуминемия приводит к уменьшению степени связывания ЛВ и повышению вероятности развития побочных эффектов, особенно тех лекарственных веществ, степень связывания которых высока (дигитоксин, варфа- рин, фенитоин и др.);
наличием других лекарственных веществ, взаимодействующих с альбуминами. Особое внимание следует уделять ЛВ с высокой степенью связывания с альбуминами (см. табл. 2.2), т.к. эти препараты могут вытеснять другие из связи с альбуминами, что может приводить к изменению их эффекта 6 7, а также повышению вероятности развития нежелательных реакций;
наличием веществ эндогенного происхождения, которые могут вытеснять лекарственные вещества из связи с альбуминами. В первую очередь к таким веществам относятся жирные кислоты и билирубин. Вытеснение ЛВ из связи с альбумином приводит к повышению концентрации его свободной фракции и, соответственно, к вероятности развития побочных эффектов.

Можно рассчитать должное изменение дозы лекарственного вещества по сравнению с исходной с тем, чтобы концентрация связанной фракции лекарственного препарата осталась неизменной. В графическом виде эти расчеты представлены на рис. 2.6. Приведенные на рисунке данные верны, если предположить наличие линейной связи между дозой лекарственного вещества и его концентрацией в плазме крови.
Результаты расчетов (рис. 2.6) показывают, что если степень связывания лекарственного вещества с белками крови составляет порядка 99%, то при гипоальбуминемии его дозировку необходимо снижать пропорционально степени снижения концентрации белков крови. При выраженной гипоальбуми- немии эти препараты не должны применяться, т.к. в этих условиях может нарушаться линейная связь между дозой препарата и его концентрацией в плазме крови. Кроме того, даже незначительное превышение концентрации свободной фракции лекарственного вещества может приводить к развитию побочных эффектов.

Содержание белков крови, % нормативных значений
Рис. 2.6. Ориентировочное изменение дозировки лекарственных веществ при гипоальбуминемии
Цифры у линий - степень связывания (СС) лекарственного вещества с белками плазмы крови. Для того чтобы найти искомую дозу лекарственного вещества, необходимо по оси Х найти степень гипоальбуминемии, поднять из этой точки перпендикуляр до пересечения с линией, соответствующей СС искомого лекарственного вещества. Значение полученной точки по оси Y даст рекомендуемое значение дозы лекарственного вещества.

Для лекарственных веществ, имеющих низкую степень связывания с белками крови, коррекция дозирования нужна только при выраженной гипоальбуминемии.
Отметим, что кровезамещающие растворы (декстраны, рео- полиглюкин и др.) позволяют восстановить объем циркулирующей крови. Однако при этом они практически не обладают транспортной функцией.

  • Итак -
  1. К основным факторам, определяющим степень комплексооб- разования ЛВ с белками плазмы крови, относятся: химическая структура и концентрация ЛВ, наличие других лекарственных веществ или эндогенных соединений, которые могут конкурировать за одни места связывания на альбумине.
  2. Степень связывания с белками крови изменяется при гипо- альбуминемии. Наибольшее клиническое значение это может иметь для ЛВ, связывающихся с белками крови более чем на 90%. При гипоальбуминемии дозы таких ЛВ необходимо снижать пропорционально степени снижения концентрации белков крови.
Резюме
Большинство лекарственных веществ находится в плазме крови в связанном виде. ЛВ, находящееся в комплексе с белком, лишено фармакологической активности. Только свободная фракция лекарственного препарата обладает терапевтической активностью.
Свободная и связанная фракции ЛВ находятся в состоянии динамического равновесия. Степень связывания с белками плазмы влияет на объем распределения ЛВ и скорость наступления терапевтического эффекта.
Основной транспортной системой крови является сывороточный альбумин. Может наблюдаться конкуренция лекарственных веществ и эндогенных субстратов (жирные кислоты, билирубин) за связывание с альбуминами, повышающая вероятность развития побочных эффектов.