Динамические законы и теории. Механический детерминизм

Динамические системы довольно популярны в экономическом моделировании.

Типы процессов, происходящих в экономических системах:

  • Детерминированные;
  • Стохастические;
  • Хаотические.

Для макроуровня, благодаря действиям объективных экономических законов и регуляторных воздействий государства, более характерные детерминированные процессы. Для микроуровня — стохастические (вероятностные).

При достаточно большом количестве наблюдений и обобщении исследуемого явления на более высоком уровне иерархии детерминированная компонента начинает превалировать, а стохастическая превращается в «шум».

При хаотичном характере исследуемой системы применения методов позволяет несколько облегчить изучение объекта за счет определения детерминированного механизма его поведения. Это, в свою очередь, позволяет уменьшить неопределенность познания системы.

Динамическая система — это такая система, параметры которой явно или неявно зависят от времени.

Итак, если для поведения системы заданные функциональные уравнения, то в них включены в явном виде переменные, относящиеся к разным моментам времени.

Важнейшие свойства сложных динамических систем

Рассмотрим самые важные свойства динамических систем.

1. Целостность (эмерджентность) динамических систем

В системе отдельные части функционируют совместно, составляя в совокупности процесс функционирования системы как целого. Совокупное функционирование разнородных взаимосвязанных элементов порождает качественно новые функциональные свойства целого, не имеющие аналогов в свойствах его элементов. Это означает принципиальную невозможность сведения свойств системы к сумме свойств ее элементов.

2. Взаимодействие динамической системы с внешней средой

Система реагирует на воздействие окружающей среды, эволюционирует под этим влиянием, но при этом сохраняет качественную определенность и свойства, отличающие ее от других систем.

3. Структура динамической системы

При исследовании системы структура выступает как способ описания ее организации. В зависимости от поставленной задачи исследования осуществляется декомпозиция системы на элементы и вводятся существенные для решаемой проблемы отношения и связи между ними. Декомпозиция системы на элементы и связи определяется внутренними свойствами данной системы. Структура динамична по природе, ее эволюция во времени и пространстве отражает процесс развития систем.

4. Бесконечность познания динамической системы

Под этим свойством понимается невозможность полного познания системы и всестороннего представления ее конечной множеством описаний, т.е. конечной количеством качественных и количественных характеристик. Поэтому система может быть представлена множеством структурных и функциональных вариантов, отражающих различные аспекты системы.

5. Иерархичность динамической системы

Каждый элемент в декомпозиции системы может рассматриваться как целостная система, элементы которой, в свою очередь, могут быть также представлены как системы. Но, с другой стороны, любая система — лишь компонент более широкой системы.

6. Элемент динамической системы

Под элементом понимается наименьшее звено в структуре системы, внутреннее строение которой не рассматривается на выбранном уровне анализа. Согласно свойства 5 любой элемент является системой, но на заданном уровне анализа эта система характеризуется только целостными характеристиками.

Целостность, структура, элемент, бесконечность и иерархичность составляют ядро системообразующих понятий общей теории систем и является основой системного представления объектов и формирования концепций системных исследований.

Для более подробного изучения свойств динамических экономических систем (ЭС) необходимо рассмотреть еще ряд дополнительных ее свойств характеристик.

  1. Состояние динамической системы . Состояние системы определяется состояниями ее элементов. Теоретически возможный набор состояний равно количеству возможных сочетаний всех состояний элементов. Однако взаимодействие составных частей приводит к ограничению количества реальных сочетаний. Изменение состояния элемента может происходить неявно, непрерывно и скачкообразно.
  2. Поведение динамических систем . Под поведением системы понимается закономерный переход из одного состояния в другое, обусловленный свойствами элементов и структурой.
  3. Непрерывность функционирования системы . Система существует, пока функционируют социально-экономические и иные процессы в обществе, которые не могут быть прерваны, иначе система перестанет функционировать. Все процессы в ЕС, как в живом организме, взаимосвязаны. Функционирования частей определяет характер функционирования целого, и наоборот. Функционирование системы связано с непрерывными изменениями, накопление которых приводит к развитию.
  4. Развитие динамической системы . Жизнедеятельность сложной системы является постоянным изменением фаз функционирования и развития, которая выражается в непрерывной функциональной и структурной перестройке системы, ее подсистем и элементов. Эволюция экономических систем обусловлена одной из важнейших свойств сложных систем — способностью к саморазвитию. Центральным источником саморазвития является непрерывный процесс возникновения и разрешения противоречий. Развитие, как правило, связан с усложнением системы, т.е. с увеличением ее внутреннего разнообразия.
  5. Динамичность системы . Экономическая система функционирует и развивается во времени, она имеет предысторию и будущее, характеризуется определенным жизненным циклом, в котором могут быть выделены определенные фазы: возникновение, рост, развитие, стабилизация, деградация, ликвидация или стимул к изменению.
  6. Сложность динамической системы . Экономическая система характеризуется большим количеством неоднородных элементов и связей, полифункциональностью, полиструктурностью, многокритериальностью, многовариантностью развития и свойствами сложных систем, поэтому она представляется, как сложная динамическая система .
  7. Гомеостатичность . Гомеостатичность отражает свойство системы к самосохранению, противодействие разрушающим воздействиям среды.
  8. Целеустремленность . Всем динамическим системам в экономике присуща целеустремленность, т.е. наличие определенных целей и стремление ее достижения. Развитие системы связан именно с изменением цели.
  9. Управляемость динамической системы . Осознанная организация целенаправленного функционирования системы и ее элементов называется управляемостью. В процессе жизнедеятельности система посредством целенаправленного управления решает постоянно возникающие в ней противоречия и реагирует на изменение внутренних и внешних условий своего существования. Согласно изменяющимся, она меняет свою структуру, корректирует цели развития и содержание деятельности элементов, т.е. происходит целенаправленная самоорганизация системы, которая на практике реализует способность к саморазвитию. Одной из основных функций самоорганизации является сохранение качественной уникальности системы в процессе ее эволюции.Свойства управляемости оказываются также в таких особенностях, как относительная автономность и функциональная управляемость.Относительная автономность функционирования экономических систем означает, что в результате действия обратной связи каждая из составляющих выходного сигнала может быть изменена за счет изменения входного сигнала, причем другие составляющие остаются не измененными. Функциональная управляемость экономической системы означает, что соответствующим выбором входного воздействия можно добиться любого выходного сигнала.
  10. Адаптивность динамической системы . Адаптивная экономической системы определяется двумя видами адаптации — пассивной и активной. Пассивная адаптация является внутренней характеристикой экономической системы, которая располагает определенными возможностями саморегулирования. Активная адаптация представляет механизм адаптивного управления экономической системой и организацию его эффективной реализации.
  11. Инерционность динамической системы . Инерционность экономической системы проявляется в возникновении запаздывания в системе, симптоматично реагирует на возмущения и управляющие воздействия.
  12. Устойчивость динамической системы . Система считается относительно устойчивой в определенно определенных пределах, если при достаточно малых изменениях условий функционирования его поведение существенно не меняется. В рамках теории систем исследуются структурная устойчивость и устойчивость траектории поведения системы. Устойчивость ЕС обеспечивается такими аспектами самоорганизации, как дифференциация и лабильность (чувствительность). Дифференциация — это стремление системы к структурной и функциональной разнообразия элементов, которая обеспечивает не только условия возникновения и разрешения противоречий, но и определяет способность системы быстро приспосабливаться к имеющимся условиям существования. Больше разнообразия — больше устойчивости, и наоборот. Лабильность означает подвижность функций элементов при сохранении устойчивости структуры системы в целом.
  13. Состояние равновесия динамической системы . Устойчивость системы связана с ее стремлением к состоянию равновесия, которое предполагает такое функционирование элементов системы, при котором обеспечивается повышенная эффективность движения к целям развития. В реальных условиях система не может полностью достичь состояния равновесия, хотя и стремится к нему. Элементы системы функционируют по-разному в разных условиях, и их динамическое взаимодействие постоянно влияет на движение системы. Система стремится к равновесию, на это направлены усилия управления, но, достигая его, она тут же от него уходит. Таким образом, устойчивая экономическая система постоянно находится в состоянии динамического равновесия, она непрерывно колеблется относительно положения равновесия, что является не только ее специфическим свойством, но и условием непрерывного возникновения противоречий как движущих сил эволюции.

История развития науки показывает, как первоначально возникшие динамические теории сменяются статистическими, описывающими тот же круг явлений в макроскопических системах, в которых не рассматривают поведение отдельных элементов этой системы (например, единичной молекулы в газе) и изменения их характеристик, а оперируют величинами, характеризующими систему в целом, т.е. макропараметрами (например, давление в газе, плотность газа и т.д.). таким образом, можно сказать, что динамические теории строятся на основании усреднения законов поведения громадного числа частиц в равновесных (или слаборавновесных) условиях, и не учитывают вариации, полученных на основании этих теорий, результатов, которые бы изменялись под влиянием на систему окружающей ее среды. В реальных процессах всегда происходят неизбежные отклонения – флуктуации .Флуктуации – это случайные отклонения параметров системы (или всей системы) от средних значений параметров (или среднего, т.е. наиболее вероятного состояния системы).

Когда флуктуации значительны, в сложных системах с большим числом элементов, которые к тому же зависят от постоянно меняющихся внешних условий, статистические законы глубже и точнее описывают исследуемые процессы.

Главное отличие статистических законов от динамических – в учете случайного (флуктуаций).

В современном естествознании законы динамического типа сочетаются с законами статистического типа. Законы динамического типа используются для систем и процессов, в которых допустимо пренебречь влиянием реально существующих случайных факторов. Если же этого сделать нельзя, то применяют статистические теории, которые дают более глубокое, детальное и точное описание реальности.

Резюмируем все вышесказанное.

Состояние системы в естественных науках может задаваться :

Значениями измеряемых величин, характеризующих эту систему, на данный момент времени

Вероятностями, с которыми та или иная величина, характеризующая систему, принимает заданные значения.

Динамические научные теории :

Описывают состояние системы значениями измеряемых величин, характеризующих систему

Не учитывают и не позволяют описывать флуктуации – случайные отклонения системы от наивероятнейшего состояния

Не используют аппарат теории вероятности.

Статистические научные теории :

Позволяют рассчитывать и предсказывать лишь вероятность того, что величина, характеризующая систему, примет то или иное значение

Описывают состояние системы на языке вероятностей, с которыми та или иная величина, характеризующая систему, принимает заданные значения

Учитывают случайные отклонения от нормы

Описывают вероятное поведение систем, состоящих из огромного числа элементов.

Соответствие между динамическими и статистическими законами :

Динамической теории соответствует более точный статистический аналог, который полнее и глубже описывает реальность

Статистическая теория всегда описывает более широкий класс явлений, чем ее динамический аналог

Статистические законы более полно и глубоко отражают объективные связи в природе, т.к они учитывают реально существующую в мире случайность

Классическая механика Ньютона (динамическая теория) является приближением квантовой механики (статистической теории) при описании движения макрообъектов

Все фундаментальные статистические теории содержат в качестве своего приближения соответствующие динамические теории при условии, что можно пренебречь случайностью.

Динамическими теориями являются :

Механика

Электродинамика

Термодинамика

Теория относительности

Статистическими теориями являются :

Молекулярно-кинетическая теория газов

Квантовая механика, другие квантовые теории

Эволюционная теория Дарвина

Основные понятия статистических теорий :

Случайность (непредсказуемость)

Вероятность (числовая мера случайности)

Среднее значение величины

Флуктуация – случайное отклонение системы от среднего (наиболее вероятного состояния).

Динамическая система - множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы. [ ] Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.

Состояние динамической системы в любой момент времени описывается множеством вещественных чисел (или векторов), соответствующим определённой точке в пространстве состояний . Эволюция динамической системы определяется детерминированной функцией, то есть через заданный интервал времени система примет конкретное состояние, зависящее от текущего.

Введение

Динамическая система представляет собой такую математическую модель некоего объекта, процесса или явления, в которой пренебрегают «флуктуациями и всеми другими статистическими явлениями».

Динамическая система также может быть представлена как система, обладающая состоянием . При таком подходе, динамическая система описывает (в целом) динамику некоторого процесса, а именно: процесс перехода системы из одного состояния в другое. Фазовое пространство системы - совокупность всех допустимых состояний динамической системы. Таким образом, динамическая система характеризуется своим начальным состоянием и законом, по которому система переходит из начального состояния в другое.

Различают системы с дискретным временем и системы с непрерывным временем.

В системах с дискретным временем, которые традиционно называются каскадами , поведение системы (или, что то же самое, траектория системы в фазовом пространстве) описывается последовательностью состояний. В системах с непрерывным временем, которые традиционно называются потоками , состояние системы определено для каждого момента времени на вещественной или комплексной оси. Каскады и потоки являются основным предметом рассмотрения в символической и топологической динамике.

Динамическая система (как с дискретным, так и с непрерывным временем) часто описывается автономной системой дифференциальных уравнений , заданной в некоторой области и удовлетворяющей там условиям теоремы существования и единственности решения дифференциального уравнения. Положениям равновесия динамической системы соответствуют особые точки дифференциального уравнения, а замкнутые фазовые кривые - его периодическим решениям.

Основное содержание теории динамических систем - это исследование кривых, определяемых дифференциальными уравнениями . Сюда входит разбиение фазового пространства на траектории и исследование предельного поведения этих траекторий: поиск и классификация положений равновесия, выделение притягивающих (аттракторы ) и отталкивающих (репеллеры ) множеств (многообразий). Важнейшие понятия теории динамических систем - устойчивость состояний равновесия (т.е. способность системы при малых изменениях начальных условий сколь угодно долго оставаться около положения равновесия или на заданном многообразии) и грубость (т.е. сохранение свойств при малых изменениях самой математической модели; «грубая система - это такая, качественный характер движений которой не меняется при достаточно малом изменении параметров»).

Привлечение вероятностно-статистических представлений в эргодической теории динамических систем приводит к понятию динамической системы с инвариантной мерой .

Современная теория динамических систем является собирательным названием для исследований, где широко используются и эффективным образом сочетаются методы из различных разделов математики: топологии и алгебры, алгебраической геометрии и теории меры, теории дифференциальных форм, теории особенностей и катастроф.

Методы теории динамических систем востребованы в других разделах естествознания, таких как неравновесная термодинамика , теория динамического хаоса , синергетика .

Определение

Пусть X {\displaystyle X} - произвольное гладкое многообразие .

Динамической системой , заданной на гладком многообразии X {\displaystyle X} , называется отображение g: R × X → X {\displaystyle g\colon R\times X\to X} , записываемое в параметрическом виде g t (x) {\displaystyle g^{t}(x)} , где t ∈ R , x ∈ X {\displaystyle t\in R,x\in X} , которое является дифференцируемым отображением, причём g 0 {\displaystyle g^{0}} - тождественное отображение пространства X {\displaystyle X} . В случае стационарных обратимых систем однопараметрическое семейство { g t: t ∈ R } {\displaystyle \{g^{t}:t\in R\}} образует группу преобразований топологического пространства X {\displaystyle X} , а значит, в частности, для любых t 1 , t 2 ∈ R {\displaystyle t_{1},t_{2}\in R} выполняется тождество g t 1 ∘ g t 2 = g t 1 + t 2 {\displaystyle g^{t_{1}}\circ g^{t_{2}}=g^{t_{1}+t_{2}}} .

Из дифференцируемости отображения g {\displaystyle g} следует, что функция g t (x 0) {\displaystyle g^{t}(x_{0})} является дифференцируемой функцией времени, её график расположен в расширенном фазовом пространстве R × X {\displaystyle R\times X} и называется интегральной траекторией (кривой) динамической системы. Его проекция на пространство X {\displaystyle X} , которое носит название фазового пространства , называется фазовой траекторией (кривой) динамической системы.

Задание стационарной динамической системы эквивалентно разбиению фазового пространства на фазовые траектории. Задание динамической системы в общем случае эквивалентно разбиению расширенного фазового пространства на интегральные траектории.

Способы задания динамических систем

Для задания динамической системы необходимо описать её фазовое пространство X {\displaystyle X} , множество моментов времени T {\displaystyle T} и некоторое правило , описывающее движение точек фазового пространства со временем. Множество моментов времени T {\displaystyle T} может быть как интервалом вещественной прямой (тогда говорят, что время непрерывно ), так и множеством целых или натуральных чисел (дискретное время). Во втором случае «движение» точки фазового пространства больше напоминает мгновенные «скачки» из одной точки в другую: траектория такой системы является не гладкой кривой, а просто множеством точек, и называется обычно орбитой. Тем не менее, несмотря на внешнее различие, между системами с непрерывным и дискретным временем имеется тесная связь: многие свойства являются общими для этих классов систем или легко переносятся с одного на другой.

Фазовые потоки

Пусть фазовое пространство X {\displaystyle X} представляет собой многомерное пространство или область в нем, а время непрерывно. Допустим, что нам известно, с какой скоростью движется каждая точка x {\displaystyle x} фазового пространства. Иными словами, известна вектор-функция скорости v (x) {\displaystyle v(x)} . Тогда траектория точки будет решением автономного дифференциального уравнения d x d t = v (x) {\displaystyle {\frac {dx}{dt}}=v(x)} с начальным условием x (0) = x 0 {\displaystyle x(0)=x_{0}} . Заданная таким образом динамическая система называется фазовым потоком для автономного дифференциального уравнения.

Каскады

Пусть X {\displaystyle X} - произвольное множество, и f: X → X {\displaystyle f\colon X\to X} - некоторое отображение множества X {\displaystyle X} на себя. Рассмотрим итерации этого отображения, то есть результаты его многократного применения к точкам фазового пространства. Они задают динамическую систему с фазовым пространством X {\displaystyle X} и множеством моментов времени T = N {\displaystyle T=\mathbb {N} } . Действительно, будем считать, что произвольная точка x 0 ∈ X {\displaystyle x_{0}\in X} за время 1 {\displaystyle 1} переходит в точку x 1 = f (x 0) ∈ X {\displaystyle x_{1}=f(x_{0})\in X} . Тогда за время 2 {\displaystyle 2} эта точка перейдет в точку x 2 = f (x 1) = f (f (x 0)) {\displaystyle x_{2}=f(x_{1})=f(f(x_{0}))} и т. д.

Если отображение f {\displaystyle f} обратимо, можно определить и обратные итерации : x − 1 = f − 1 (x 0) {\displaystyle x_{-1}=f^{-1}(x_{0})} , x − 2 = f − 1 (f − 1 (x 0)) {\displaystyle x_{-2}=f^{-1}(f^{-1}(x_{0}))} и т. д. Тем самым получаем систему с множеством моментов времени T = Z {\displaystyle T=\mathbb {Z} } .

Примеры

  • Система дифференциальных уравнений
{ d x d t = v d v d t = − k x {\displaystyle {\begin{cases}{\frac {dx}{dt}}=v\\{\frac {dv}{dt}}=-kx\end{cases}}}

задает динамическую систему с непрерывным временем, называемую «гармоническим осциллятором». Её фазовым пространством является плоскость (x , v) {\displaystyle (x,v)} , где v {\displaystyle v} - скорость точки x {\displaystyle x} . Гармонический осциллятор моделирует разнообразные колебательные процессы - например, поведение груза на пружине. Его фазовыми кривыми являются эллипсы с центром в нуле.

Вопросы теории динамических систем

Имея какое-то задание динамической системы, далеко не всегда можно найти и описать её траектории в явном виде. Поэтому обычно рассматриваются более простые (но не менее содержательные) вопросы об общем поведении системы. Например:

  1. Есть ли у системы замкнутые фазовые кривые, то есть может ли она вернуться в начальное состояние в ходе эволюции?
  2. Как устроены инвариантные многообразия системы (частным случаем которых являются замкнутые траектории)?
  3. Как устроен аттрактор системы, то есть множество в фазовом пространстве, к которому стремится «большинство» траекторий?
  4. Как ведут себя траектории, выпущенные из близких точек - остаются ли они близкими или уходят со временем на значительное расстояние?
  5. Ссылки

ДИНАМИЧЕСКАЯ СИСТЕМА, математическая модель эволюции реальной (физической, биологической, экономической и др.) системы, состояние которой в любой момент времени однозначно определяется её начальным состоянием.

Историческая справка . Основатели теории динамической системы - А. Пуанкаре и А. М. Ляпунов. В конце 19 - начале 20 века они обнаружили и исследовали класс задач (в небесной механике, в теории фигур равновесия вращающейся жидкости и т.д.), в которых необходимо было знать поведение не одного отдельно взятого решения х(t) системы обыкновенных дифференциальных уравнений (ОДУ), а всех (или очень многих) решений, соответствующих различным начальным состояниям реальной (например, физической) системы. В этом случае х(t) можно представить как кривую в пространстве всевозможных состояний (т. е. значений векторов х) и воспользоваться геометрическими свойствами этой кривой для понимания и описания свойств решения х(t). Такая кривая называется фазовой траекторией.

В 1-й трети 20 века теория динамической системы развивалась в работах ряда математиков. Наибольшее значение имели работы А. А. Андронова, который осознал и показал на важных примерах, что теория динамической системы эффективна для исследования нелинейных процессов в природе и в лаборатории. К этому времени стала понятна необходимость изучения нелинейных задач, так как линейный математический аппарат часто не в состоянии описать реальные процессы. Андронов описал автоколебания с помощью предельных циклов Пуанкаре и очертил контуры новой науки - нелинейной динамики. Вместе с Л. С. Понтрягиным он ввёл понятие грубой системы, нечувствительной к малым изменениям параметров. Такая система не меняет резко свойств при малых изменениях параметров, т. е. её состояния до и после изменения параметров топологически тождественны (эквивалентны). Грубые системы заполняют открытые области в функциональном пространстве всех динамических систем. Вне этих областей и, в частности, на их границах лежат негрубые системы. Проход через границу сопровождается бифуркацией - сменой структуры динамической системы. В семействе динамических систем, зависящих от параметра, зная структуру динамической системы при начальном значении параметра и все бифуркации, можно однозначно предсказать её структуру при конечном значении параметра.

Во 2-й половине 20 века Д. В. Аносов, В. И. Арнольд, Р. Боуэн, Р. Мане, Я. Г. Синай, С. Смейл, С. Хаяси, Л. П. Шильников и др. развили идеи Андронова и создали глубокую и стройную теорию динамической системы, которая даёт верные представления о природе детерминистских процессов и позволяет исследовать модели реальных систем.

Характеристики динамической системы. Определение динамической системы включает в себя пространство состояний {х} и зависящий от времени t оператор (закон) эволюции φ t , по которому система из начального состояния х 0 приходит в состояние x t в момент времени t. Состояние динамической системы описывают набором переменных х, выбираемых из соображений естественности их интерпретации, простоты описания, симметрии и т. п. Множество состояний (фаз) динамической системы образует фазовое пространство, в котором каждому состоянию отвечает точка, а эволюция изображается движением точки по фазовой траектории - кривой, вложенной в фазовое пространство. Например, движение n частиц под действием сил притяжения описывается в фазовом пространстве множеством всех наборов координат и скоростей этих частиц, а оператор эволюции определяется решением соответствующей системы ОДУ.

Особенности эволюции системы проявляются в типе фазовых траекторий. В частности, состоянию равновесия динамической системы соответствует вырожденная траектория - точка в фазовом пространстве, периодическому движению - замкнутая кривая, квазипериодическому движению, имеющему в спектре m базовых частот, - кривая на m-мерном торе, вложенном в фазовое пространство. Стационарному режиму (установившемуся движению) диссипативной системы соответствует аттрактор - множество траекторий, притягивающих к себе все близкие траектории. Установившимся периодическим колебаниям соответствует предельный цикл - изолированная (в фазовом пространстве) замкнутая траектория; хаотическим автоколебаниям отвечает обычно странный аттрактор - притягивающее множество, состоящее из неустойчивых траекторий.

По характеру уравнений и методам исследований динамические системы делят на конечномерные (с конечномерным фазовым пространством) и бесконечномерные (распределённые). Конечномерные динамические системы можно подразделить на консервативные и диссипативные, что соответствует различной физической природе реальных систем. Консервативные динамические системы - это системы с сохраняющимся фазовым объёмом. Их образуют гамильтоновы системы с не зависящей от времени функцией Гамильтона. У диссипативных систем фазовый объём не сохраняется, в их фазовом пространстве существует ограниченная область (шар диссипации), в которую попадает навсегда точка на любой траектории.

Динамические системы можно также подразделить на системы с непрерывным и дискретным временем. Динамические системы с непрерывным временем задаётся обычно системой ОДУ х = f(х) (х - скалярная либо векторная величина, точкой обозначено дифференцирование по времени), в которой для каждой начальной точки х имеется единственное решение. Состояние равновесия х 0 такой динамической системы определяется из уравнения f(х 0) = 0. Поведение в окрестности состояния равновесия О зависит от свойств линеаризованной вблизи О системы, а именно от корней λ 1 , λ 2 ,.., λ n характеристического уравнения

где δ ij - символ Кронекера. Пусть Re λ j отрицательны для р и положительны для q корней, причём р + q = n. Если р = n (q = n), точка О называется устойчивым (неустойчивым) узлом. Близкие к этой точке в фазовом пространстве траектории притягиваются к ней в случае устойчивого узла, когда время t → +∞, а в случае неустойчивого узла - при t→ -∞. Если р≠0, q≠0, точка О называется седлом. Через неё проходят две поверхности: р-мерная W s O и q-мерная W u O , называемые устойчивым и неустойчивым многообразиями седла О, а также устойчивой и неустойчивой сепаратрисами. Эти поверхности образованы траекториями, стремящимися к О при t →+∞ и t → -∞ соответственно. Остальные траектории уходят из седла при t → ± ∞ (рис. 1).

Траектория, лежащая одновременно в W s O W u O (и не совпадающая с О), называется гомоклинической или петлёй сепаратрисы седла. В одномерных моделях непрерывной среды гомоклинической траектории отвечает стационарная бегущая волна в форме солитона.

Периодическое решение х = р(t) системы х = f(х) имеет следующее свойство: р(t) = р(t+Т) для любого t, где Т - период. Этому решению соответствует замкнутая траектория L в фазовом пространстве. Поведение траекторий в окрестности периодической траектории L характеризуется мультипликаторами γ 1 , ..., γ n , которые находятся с помощью решений линеаризованной на L системы. Один из них, например γ n , всегда равен 1. Если |γ i | < 1 (|γ i | > 1) для всех i = 1, 2, ..., n - 1, то траектория L устойчива (неустойчива). Если р мультипликаторов лежат внутри, а q - вне единичного круга в комплексной плоскости, р + q = n - 1, то L - траектория седлового типа. Она лежит в пересечении двух поверхностей: (р + 1)-мерной W s L и (q + 1)-мерной W u L (устойчивой и неустойчивой сепаратрис). Поверхность W s L (W u L) состоит из траекторий, стремящихся к L при t → +∞ (t →- ∞). При n = 3 и р = q=1 поверхность W s L (W u L) топологически эквивалентна цилиндру, если мультипликатор γ положителен и больше 1 (рисунок 2).

Поведение траекторий в окрестности L изучают, рассматривая их следы на (n - 1)-мерной поверхности D, пересекающей (без касания) L и близкие к ней траектории. Если точка m 0 на D достаточно близка к L, то траектория, проходящая через m 0 , пересекает D в другой точке m, называемой отображением последования (отображением Пуанкаре) (рис. 3).

Линеаризация отображения Пуанкаре в точке пересечения L с D описывается матрицей Якоби. Её собственные значения γ 1 , ..., γ n-1 являются мультипликаторами замкнутой траектории L.

Устойчивые и неустойчивые многообразия периодических траекторий могут пересекаться. Траектория, принадлежащая пересечению W s L и W u L и отличная от L, является гомоклинической. Если это пересечение происходит без касания, то в окрестности гомоклинической траектории имеется множество разнообразных неустойчивых траекторий, среди которых содержится бесконечное множество замкнутых траекторий седлового типа. Подобное множество траекторий типично для динамической системы с хаотической динамикой. Таким образом, наличие гомоклинической траектории может служить критерием существования хаотических режимов в динамической системе (смотри Динамический хаос).

Динамические системы с дискретным временем обычно задаются отображением G фазового пространства в себя: x n+1 = G(x n). Тогда эволюционный оператор φ t , t = m, - просто m раз применённое отображение G: φ n x=G(G(...G(x)...)). Например, простейшая модель динамики популяций описывает плотность числа членов (n + 1)-й генерации, х n+1 , как функцию числа х n предыдущей генерации: х n+1 = ах n - bх 2 n , а, b > 0 - параметры задачи. В зависимости от значений а и b эта динамическая система может демонстрировать либо регулярную (все аттракторы - периодические траектории), либо хаотическую динамику.

Отображение Пуанкаре фактически определяет систему с дискретным временем. Например, динамические системы, описывающие действие периодического возмущения на систему ОДУ, которые можно записать в виде х = f(х,θ), θ = ω, где f - периодическая по θ вектор-функция, всегда порождают отображение Пуанкаре. Для таких систем существует глобальная секущая поверхность Пуанкаре θ = 0, которую каждая траектория пересекает бесконечное число раз. Поведение траекторий в системе с непрерывным временем полностью определяется динамической системой с дискретным временем.

Важная часть теории динамической системы - эргодическая теория, которая описывает статистические свойства траекторий. Если они неустойчивы, точки на разных траекториях расходятся в процессе эволюции на существенное расстояние друг от друга, несмотря на близость начальных состояний, система демонстрирует «чувствительную зависимость» от начальных условий. (Заметим, что именно с неустойчивостью траекторий связана невозможность долгосрочного предсказания погоды.) Поскольку невозможно определить начальное состояние с бесконечной точностью (всегда существуют мельчайшие ошибки измерения или запоминания), необходимо изучать поведение не отдельных траекторий, а пучков траекторий, проходящих сквозь «пятно» начальных условий. Эти траектории могут обладать различными свойствами, и разнообразие этих свойств можно описать в терминах вероятностных распределений.

А. Пуанкаре первым высказал в качественной форме мысль, что при неустойчивости траекторий динамической системы речь может идти об их статистических свойствах такого же характера, какие к тому времени уже упоминались в работах Л. Больцмана и Дж. У. Гиббса по статистической механике. Подобные идеи были реализованы в эргодической теории и успешно осуществляют роль «моста» между детерминированным и случайным «мирами».

С помощью теории динамической системы изучены и объяснены многие нелинейные явления в природе и технике, такие как динамический хаос, синхронизация периодических и хаотических колебаний, образование диссипативных структур, пространственно-временной хаос в моделях распределённых систем, конкуренция мод в нейронных сетях мозга и т. д.

Лит.: Качественная теория динамических систем второго порядка. М., 1967; Корнфельд И. П., Синай Я. Г., Фомин С. В. Эргодическая теория. М., 1980; Итоги науки и техники. Сер. Современные проблемы математики. Фундаментальные направления. М., 1985-1991. [Т. 1-9]: Динамические системы; Каток А., Хассельблатт Б. Введение в современную теорию динамических систем. М., 1999.

В. С. Афраймович, М. И. Рабинович.

Динамические и статистические теории

Одна из главных задач любой научной теории заключается в том, чтобы по заданному состоянию системы предсказать ее будущее или восстановить прошлое состояние. Однако, поскольку состояние системы можно описывать по-раз­но­му (пп. 3.4.1, 3.4.2, 3.5.3), различается и характер предсказаний. В этом отношении все теории можно разделить на два класса: динамические и статистические . В динамической теории состояние системы определяется значениями характеризующих ее физических величин. Соответственно, динамическая теория позволяет предсказывать значения физических величин, характеризующих систему.

Исторически первая научная теория - классическая механика - теория динамическая. Она стала образцом, по которому кроились другие разделы классического естествознания: термодинамика, электродинамика, теория относительности, теория химического строения, систематика живых существ… Сформировалось убеждение, что динамические теории несут наиболее фундаментальное знание.

Теория, в которой состояние системы определяется заданием вероятностей тех или иных значений физических величин, относится к статистическим теориям.

Статистическая теория позволяет предсказывать лишь вероятности тех или иных значений физических величин, характеризующих систему.

Первые статистические теории стали возникать в XIX веке: молекулярно-ки­не­ти­чес­кая теория и, более широко, статистическая механика в физике, дарвиновская теория эволюции (основанная на представлениях о неопределенной, то есть, случайной изменчивости), менделевская генетика. Большинство же ныне действующих статистических теорий появились уже в XX веке. Со статистическими теориями в естествознание вошло фундаментальное понятие флуктуации .

Флуктуация - это случайное отклонение характеристик системы
от наиболее вероятного или среднего значения.

Причины флуктуаций могут быть различными. Например, голубой цвет неба, в конечном счете, обусловлен тем, что количество молекул воздуха в заданном объеме не постоянно: оно все время колеблется вокруг среднего значения. Причина - беспорядочное тепловое движение молекул: в какой-то момент больше молекул покинет данный объем, чем влетит в него извне, а в следующий момент - наоборот. Нулевые колебания полей в физическом вакууме (п. 3.3.4) - это тоже флуктуации, но уже квантового происхождения. В биологии флуктуации скрываются за терминами «не­о­пре­де­лен­ная изменчивость», «му­та­ции»; здесь их основная причина - влияние множества неучитываемых факторов. Понятие флуктуации фактически ис­поль­зу­ет­ся и в социальных науках, когда говорится о субъ­ек­тив­ных факторах общественных процессов, роли личности в истории и т.д.

Динамические теории не учитывают (и не допускают возможности) флуктуаций; статистические - допускают, учитывают и даже выводят на передний план.